DMIP – Exercise Sinograms and Filtered Backprojection (FBP) for Parallel Beam

Marco Bögel, Bastian Bier Pattern Recognition Lab (CS 5)

TECHNISCHE FAKULTÄT

- What is a projection?
 - Mathematically, a projection is a line integral of a function

- What is a projection?
 - Mathematically, a projection is a line integral of a function
 - We use projection synonymous with X-ray projection

$$I = I_0 e^{-(\int f(x,y) \, dl)} \int f(x,y) \, dl = -\ln(I/I_0)$$

We get from detector

Line integral used for recon

- What is a sinogram and how does it relate to projections?
 - A stack of all acquired projections sorted by their angle
 - A 2-D sinogram contains information from 1-D projections, i.e. all necessary information to reconstruct one 2-D slice

- What is a sinogram and how does it relate to projections?
 - A stack of all acquired projections sorted by their angle
 - A 2-D sinogram contains information from 1-D projections, i.e. all necessary information to reconstruct one 2-D slice
- Why is it called sinogram?
 - Because an off-centred object creates a trace that looks like a sine-wave

Exercise today:

1) We will scan a Shepp-Logan phantom and create a sinogam

2) Implementation of different kernels

3) Backprojection of the filtered sinogram to reconstruct the phantom

1) Scan Simulation

• Projections have to be acquired from different angles

2) Filtering of the sinogram

• For the Filtered Backprojection, why do we need a high pass filter? What would the reconstruction look like without filter?

2) Filtering of the sinogram

- For the Filtered Backprojection we can use different filter kernels. List them!
 - Most important are Ram-Lak and Shepp-Logan

64

Reconstruction

• Task: Implement the discrete spatial version of the RamLak filter.

Reconstruction

• Task: Implement the discrete spatial version of the Shepp-Logan filter.

3) Backprojection

- Two different approaches are common
- 1. Detector driven: "Smear" detector values over the image.
 - Problem: Interpolation in 2D!
- 2. Pixel driven: Sample where you expect the outcome!
 - Go over all pixel centers
 - Project center points to the detector
 - Interpolate on the detector and assign to corresponding pixel

Filtered Backprojection for Parallel Beam

- What is the maximal angle that makes sense to acquire projections at?
 - 180° after that, the same data is acquired twice
- Which artefacts appear if you use 110 projections at
 - 1° increment?
 - View-undersampling artefacts
 - Manifestation in CT: Streaks, "rough" edges, wrong grey values and (most important) missing parts

Filtered Backprojection for Parallel Beam

- Which artefacts appear if data gets truncated?
 - Cupping artefacts, bright ring artefacts
 - Wrong grey values

