DMIP - Exercise
 Sinograms and Filtered Backprojection (FBP) for Parallel Beam

Marco Bögel, Bastian Bier Pattern Recognition Lab (CS 5)

Sinograms

- What is a projection?
- Mathematically, a projection is a line integral of a function

Sinograms

- What is a projection?
- Mathematically, a projection is a line integral of a function
- We use projection synonymous with X-ray projection

$$
I=I_{0} \mathrm{e}^{-\left(\int f(x, y) \mathrm{d} l\right)} \square \int f(x, y) \mathrm{d} l=-\ln \left(I / I_{0}\right)
$$

We get from detector

Line integral used for recon

Sinograms

- What is a sinogram and how does it relate to projections?
- A stack of all acquired projections sorted by their angle
- A 2-D sinogram contains information from 1-D projections, i.e. all necessary information to reconstruct one 2-D slice

Sinograms

- What is a sinogram and how does it relate to projections?
- A stack of all acquired projections sorted by their angle
- A 2-D sinogram contains information from 1-D projections, i.e. all necessary information to reconstruct one 2-D slice
- Why is it called sinogram?
- Because an off-centred object creates a trace that looks like a sine-wave

Sinograms

Exercise today:

1) We will scan a Shepp-Logan phantom and create a sinogam
2) Implementation of different kernels

3) Backprojection of the filtered sinogram to reconstruct the phantom

1) Scan Simulation

- Projections have to be acquired from different angles

 UNIVERSITAT

2) Filtering of the sinogram

- For the Filtered Backprojection, why do we need a high pass filter? What would the reconstruction look like without filter?

1

2

16

2) Filtering of the sinogram

- For the Filtered Backprojection we can use different filter kernels. List them!
- Most important are Ram-Lak and Shepp-Logan

4

256

Reconstruction

- Task: Implement the discrete spatial version of the RamLak filter.

$$
h_{t}= \begin{cases}\frac{1}{4} & t=0 \\ 0 & t \text { even } \neq 0 \\ -\frac{1}{\pi^{2} t^{2}} & t \text { odd }\end{cases}
$$

Ram-Lak filter

Reconstruction

- Task: Implement the discrete spatial version of the SheppLogan filter.

$$
h_{t}=-\frac{2}{\pi^{2}} \cdot \frac{1}{\left(4 t^{2}-1\right)}
$$

Shepp-Logan filter

3) Backprojection

- Two different approaches are common

1. Detector driven: "Smear" detector values over the image.

- Problem: Interpolation in 2D!

2. Pixel driven: Sample where you expect the outcome!

- Go over all pixel centers
- Project center points to the detector
- Interpolate on the detector and assign to corresponding pixel

Filtered Backprojection for Parallel Beam

- What is the maximal angle that makes sense to acquire projections at?
- 180° - after that, the same data is acquired twice
- Which artefacts appear if you use 110 projections at 1° increment?
- View-undersampling artefacts
- Manifestation in CT: Streaks, "rough" edges, wrong grey values and (most important) missing parts

Filtered Backprojection for Parallel Beam

- Which artefacts appear if data gets truncated?
- Cupping artefacts, bright ring artefacts
- Wrong grey values

