Diagnostic Medical Image Processing (DMIP)
WS 2015/16
Marco Bögel, Room 09.155
Exercise 1: Singular Value Decomposition (SVD) and Fourier Transform (FT)

1 Singular Value Decomposition (SVD)

Have a look at the slides of the topic SVD
Create a matrix $A=\left(\begin{array}{ccc}11 & 10 & 14 \\ 12 & 11 & -13 \\ 14 & 13 & -66\end{array}\right)$. Check the determinant of this matrix. Compute the inverse matrix of A without using the command A.inverse(). Compare the result to A.inverse(). How do we get the condition number? What does the condition number express?

If we set the threshold $\epsilon=10^{-3}$, we get a rank deficiency. How can we get the nullspace and the range of the matrix B ?

1.1 Exercise problem

Show that a variation of the elements of b by 0.1% implies a change in x by 240%.
Consider the matrix A, which is non-singular. The equation $A x=b$, where $b=\left(\begin{array}{l}1.001 \\ 0.999 \\ 1.001\end{array}\right)$ has the solution $x=A^{-1} b$.

1.2 Optimization Problems

- Implement the optimization problems 1 and 4 of the lecture slides.
- Optimization problem 2: Four 2-D vectors were given on the lecture slides. Implement the optimization problem for the general case, e.g. $5,6,20$ or N vectors.
- Implement the third optimization problem using the image yu_fill.jpg. How many approximations do we have? Which rank-l-approximations are sufficient?

The rank approximation should look like this:

Figure 1: Rank approximation of image yu_fill.jpg.

2 Fourier Transform (FT)

Load a phantom image into your workspace. Compute the Fourier Transform. There are some possibilities of visualization. What's the difference?

\qquad

