Exercises for Pattern Recognition Peter Fischer, Shiyang Hu Assignment 2, 28/31.10.2014

General Information:

Exercises (1 SWS): Tue 12:15 - 13:45 (0.154-115) and Fri 08:15 - 09:45 (0.151-115)

Certificate: Oral exam at the end of the semester Contact: peter.fischer@fau.de, shiyang.hu@fau.de

Maximum Likelihood Estimation

Exercise 1 Let $x_1 ldots x_k$ be a set of observations according to the exponential density

$$p(x; \lambda) = \lambda \exp(-\lambda x)$$
 for $x > 0$.

The observed samples are considered i.i.d. (independent and identically distributed).

- (a) Derive the log-likelihood function $L(\lambda)$ for the parameter λ based on a given set of observations.
- (b) Determine the Maximum Likelihood estimate for λ .

Exercise 2 Create a logistic regression classifier for the toolbox. Assume a decision boundary that is affine in the original variables $F(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}$, where $\mathbf{x} = (x_1, x_2, \dots, 1)^T$. Create a new m-file, and modify Classification.txt and contents.m.

- (a) What are the training formulas for the logistic regression?
- (b) Implement the training step using the Newton-Raphson algorithm. Use the modeled posterior probabilities to compute the classification result.
- (c) The shape of the decision boundary is linear. What does this imply for the class-conditional densities? How can you achieve nonlinear decision boundaries?