IMIP – Exercise Vesselness Filtering & Bilateral Filtering

Yan Xia, Matthias Hoffmann Pattern Recognition Lab (CS 5)

Vessel Segmentation

- Problem 1: Vessels appear in different diameters
 → We need to model different scales
- Problem 2: Edges are only a weak model of vessels
 → Structure tensor insufficient for vessel modelling

Problem 1: Scale Modelling

• Solution using scale space s

$$egin{aligned} & I(x,s) \ &= \ I(x) * G(x,s) \ &= \ rac{1}{\sqrt{2\pi s^2}} e^{-rac{||x||^2}{2s^2}} \end{aligned}$$

• Derivative of Gaussians

$$\frac{\delta}{\delta x}I(x,s) = I(x) * \frac{\delta}{\delta x}G(x,s)$$

Edges are not a good model of a vessel
 → Compute Hessian (The second order structure is exploited for local shape properties) |λ₁| ≥ |λ₂| ≥ |λ₃|, λ_n ∈ ℝ

Edges are not a good model of a vessel
 → Compute Hessian (The second order structure is exploited for local shape properties) |λ₁| ≥ |λ₂| ≥ |λ₃|, λ_n ∈ ℝ

blob

Edges are not a good model of a vessel
 → Compute Hessian (The second order structure is exploited for local shape properties) |λ₁| ≥ |λ₂| ≥ |λ₃|, λ_n ∈ ℝ

Edges are not a good model of a vessel
 → Compute Hessian (The second order structure is exploited for local shape properties) |λ₁| ≥ |λ₂| ≥ |λ₃|, λ_n ∈ ℝ

In sum, fo 3D image	vessel in	essel order str > \lambda_2	essel prder structure is exploited $\geq \lambda_2 \lambda_n \in \mathbb{R}$		
	$ \lambda_3 \approx 0$)	λ1	λ2	λ3
$\begin{array}{l} \lambda_2 \gg \lambda_3\\ \lambda_1 \approx \lambda_2 \end{array}$			-	0	0
		- 	+	0	0
line		λ ₁ λ ₃	-	-	0
E		λ2	+	+	0
blob	\bigcirc	λ1 λ3	-	-	-
		λ2	+	+	+

$$\mathcal{S} = \|\mathbf{H}[L(\mathbf{x})]\|_F = \sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}, \quad \mathcal{S} \in \mathbb{R}^{0+1}$$

In regions with high contrast, this norm will become larger since at least one of the eigenvalues will be large.

 In the definition of vesselness the three properties are combined

$$V(\boldsymbol{x}, \boldsymbol{s}) = \begin{cases} 0\\ (1 - \exp\left(-\frac{R_A^2}{2\lambda^2}\right)) \exp\left(-\frac{R_B^2}{2\beta^2}\right) (1 - \exp\left(-\frac{S^2}{2c^2}\right)) \end{cases}$$

 $\lambda, \beta, c \rightarrow$ Parameter to select by user ($\lambda = \beta = 0, 5; c$ depends on contrast)

The idea behind this expression is to map the features into probability-like estimators of vesselness.

 In the definition of vesselness the three properties are combined

$$V(\mathbf{x}, s) = \begin{cases} 0\\ (1 - \exp\left(-\frac{R_A^2}{2\lambda^2}\right)) \exp\left(-\frac{R_B^2}{2\beta^2}\right) (1 - \exp\left(-\frac{S^2}{2c^2}\right)) \end{cases}$$

The idea behind this expression is to map the features into probability-like estimators of vesselness.

The vesselness measure is analyzed at different scales. We integrate them to obtain the final estimate of vesselness:

$$V(\mathbf{x}) = \max_{s} V(\mathbf{x}, s)$$

Vessel Model in 2D (for exercise)

• Compute Hessian in 2D

$$H_{s} = \begin{pmatrix} \frac{\delta^{2}}{\delta x^{2}} I(x,s) & \frac{\delta^{2}}{\delta x \delta y} I(x,s) \\ \frac{\delta^{2}}{\delta y \delta x} I(x,s) & \frac{\delta^{2}}{\delta y^{2}} I(x,s) \end{pmatrix}$$

• Ideal vessel structure in 2D

 $|\lambda_1| < |\lambda_2| \quad \land \quad |\lambda_1| \approx 0$

Note: in exercise we sort eigenvalues in ascending order!

Two vesselness measures

Blobness measure and second-order structure in 2D:

$$R_B = rac{\lambda_1}{\lambda_2}$$
 (Close to 0, if vessel)
 $S = \sqrt{\lambda_1^2 + \lambda_2^2}$ (High contrast , if vessel)

Two vesselness measures

Blobness measure and second-order structure in 2D:

$$R_B = rac{\lambda_1}{\lambda_2}$$
 (Close to 0, if vessel)
 $\mathcal{S} = \sqrt{\lambda_1^2 + \lambda_2^2}$ (High contrast , if vessel)

Combining them into probability estimator:

 $V(\mathbf{x}, \mathbf{s}) = \begin{cases} 0 & \text{if } \lambda_2 > 0\\ \exp\left(-\frac{R_B^2}{2\beta^2}\right)\left(1 - \exp\left(-\frac{S^2}{2c^2}\right)\right) & \end{cases}$

 β , *c*: Control parameters (β = 0.5; *c* depends on scaling)

$$V(\mathbf{x}) = \max_{s_{\min} < s < s_{\max}} V(\mathbf{x}, s)$$

Bilateral Filtering

• *Problem*: Conventional filters smooth across edges

Idea: Incorporate edge-stopping functionality based on pixel similarity

General idea

- Every sample is replaced by a weighted average of its neighbours
- These weights reflect two properties

 → How close are the neighbour and the center sample, so that that larger weight to closer samples (Spatial closeness)
 - → How similar are the neighbour and the center sample larger weight to similar samples (Range similarity)
- All the weights should be normalized to preserve the local mean

$$BF[I]_{x} = \frac{1}{W_{x}} \sum_{x' \in \omega_{x}} G_{\sigma_{c}}(||x - x'||) G_{\sigma_{s}}(|I(x) - I(x')|) I_{x'}$$

$$BF [I]_{x} = \frac{1}{W_{x}} \sum_{x' \in \omega_{x}} G_{\sigma_{c}} (||x - x'||) G_{\sigma_{s}} (|I(x) - I(x')|) I_{x'}$$
space weight

It is clear that in weighting this neighborhood, we would like to preserve the step

Implementation for Exercise

• Pre-computed spatial closeness in the mask (it's independent to image)

closeness =
$$\frac{1}{\sqrt{2\pi\sigma_c^2}} \exp\left(-\frac{X^2 + Y^2}{2\sigma_c^2}\right)$$

- Compute range similarity (depends on image intensity)
 - 1. Extract a sub-region of the image which is inside the filter mask
 - 2. Get the difference of intensity in point (y,x) and its neighbouring's

- Combine these two weights for each pixel inside the mask
- New intensity is obtained by a weighted average of its neighbours

filtered(x) =
$$\sum_{\mathbf{x}' \in \omega_x} \mathbf{I}(\mathbf{x}') \mathbf{W}(x, x') / \sum_{\mathbf{x}' \in \omega_x} \mathbf{W}(x, x')$$