Multiview Geometry

Dr. Elli Angelopoulou

Pattern Recognition Lab (Computer Science 5)
University of Erlangen-Nuremberg

Multiview Analysis

- Observing the same scene point from multiple distinct viewpoints allows the recovery of 3D structure.
- A key component of multiview analysis is finding corresponding scene regions in the different image planes - the correspondence problem.
- The relative shift between corresponding projections, the disparity, provides 3D structure information.
- Recovery of exact 3D data requires further knowledge about the camera setup.

First Camera

- Camera 1

■ Camera 1:

- Center of Projection O
- Image plane π
- Scene point P projects on point p on π.

Second Camera

- Camera 2

- Camera 2:
- Center of Projection O^{\prime}
- Image plane π^{\prime}
- Scene point P projects on point p^{\prime} on π^{\prime}.

Epipolar Plane

- The epipolar plane is defined by the 2 COPs O and O^{\prime} and a point in the scene P.

- The lines $O P$ and $O^{\prime} P$ lie on the epipolar plane Γ.
- Point p lies on the $O P$ line and on the image plane π. It is the intersection of $O P$ and π.
- Point p^{\prime} lies on the $O^{\prime} P$ line and on the image plane π^{\prime}. It is the intersection of $O^{\prime} P$ and π^{\prime}.

Epipolar Line

- The epipolar line is the intersection of the epipolar plane with the image plane.

- Since point p^{\prime} lies on the $O^{\prime} P$ line and on the image plane π^{\prime}, it also lies on the intersection of the epipolar plane with the image plane π^{\prime}, i.e. on the epipolar line I^{\prime}
- Since point p lies on the $O P$ line and on the image plane π, it also lies on the intersection of the epipolar plane with the image plane π, i.e. on the epipolar line l.

Epipoles

- The baseline T is the line between the 2 COPs O and O^{\prime}. In verged cameras, this line intersects both plane π and π^{\prime}.
- The epipole is the intersection of the baseline with the respective image plane.

Epipolar Constraint

- The epipolar line / passes through the epipole e.
- The epipolar line $/$ ' passes through the epipole e^{\prime}.
- If both p and p^{\prime} are projections of the same point P, then p and p^{\prime} must lie on the same epipolar plane. They must lie on epipolar lines / and l^{\prime} respectively. This is called the epipolar constraint.

Impact of the Epipolar Constraint

- The epipolar constraint has a fundamental role in stereo and motion analysis.
- It reduces the correspondence problem to a 1D search along conjugate epipolar lines.
- Given an image point p, one needs to only search in the epipolar line l^{\prime} for the corresponding point p^{\prime}.

Required Knowledge

■ In order to know the epipolar geometry, we need:

- The location of the two COPs
- The location of the two image planes
- The orientation of the image planes

■ We need to know the intrinsic and extrinsic camera characteristics.

■ Intrinsic camera characteristics

- Pixel size
- Focal length
- Principal point
- Extrinsic camera characteristics
- The relative position of the 2 optical centers
- The relative orientation of the two image planes

Epipolar Constraint - Calibrated Case

- Assume that the intrinsic parameters of each of the cameras are known, i.e. the mapping from the image coordinate system to a metric camera coordinate system.

■ Goal: Express algebraically the epipolar constraint, so that it can be incorporated in our correspondence, stereo and motion algorithms.

Epipolar Plane Constraint

- The vectors $O p, O^{\prime} p^{\prime}$ and $O^{\prime} O$ are all co-planar, i.e. they must satisfy the following equation:

$$
\overrightarrow{O p} \cdot\left(\overrightarrow{O^{\prime} O} \times \overrightarrow{O^{\prime} p^{\prime}}\right)=0
$$

- The vector $O p$ is perpendicular to the vector resulting from the cross-product of $O^{\prime} O$ and $O^{\prime} p^{\prime}$.

Relating the 2 Camera Coord. Systems

- Each image is unaware of the other camera.
- Point p is specified in the local coordinate system of the camera with COP O.
- Similarly point p^{\prime} is specified in the local coordinate system of the camera with COP O^{\prime}.
- We need to express everything in terms of a single coordinate system.
- Without loss of generality we choose as the reference coordinate system the one of the camera with COP O.

Translation

- There is a translation vector t, (the baseline T to be precise) that shows you how one can move COP O' to COP 0 .

$$
\vec{t}=\overrightarrow{O^{\prime} O}
$$

Need for Rotation

- If we apply this translation t to every point p^{\prime} of the camera with COP O^{\prime} then we will move the coordinate system with COP O^{\prime} so that both camera coordinates are pinned to the same origin O.

Rotation

- Still the two coordinate systems can differ by a rotation. Let R be the rotation matrix that aligns the corresponding axes of the two camera coordinates.

Translation and Rotation

- Each point p^{\prime} after the translation from camera O^{\prime} to camera O, is rotated by R.
- The two camera coordinate systems are now aligned.
- Everything can be expressed in terms of the coordinate system of camera O.

Epipolar Constraint Revisited

■ Recall that vectors $O p, O^{\prime} p^{\prime}$ and $O^{\prime} O$ are co-planar:

$$
\overrightarrow{O p} \cdot\left(\overrightarrow{O^{\prime} O} \times \overrightarrow{O^{\prime} p^{\prime}}\right)=0
$$

■ Rewritten in the coordinate frame of camera O :

$$
\left.\vec{p} \cdot\left(\vec{t} \times \overrightarrow{\left(R p^{\prime}\right.}\right)\right)=0
$$

Epipolar Constraint - Matrix Form

- The epipolar equation can be rewritten as a series of matrix multiplications:

$$
\mathbf{p}^{T}(\mathbf{t} \times \mathbf{R}) \mathbf{p}^{\prime}=0
$$

- This is often represented more compactly as:

where \mathbf{E} is a 3×3 matrix of the form: $\mathbf{E}=\left[\mathbf{t}_{\mathrm{x}}\right] \mathbf{R}$ and it is known as the essential matrix.
$\left[\mathbf{t}_{\times}\right]$is a skew-symmetric matrix such that $\left[\mathbf{t}_{\times}\right] \mathbf{b}=\mathbf{t} \times \mathbf{b}$
$\left[\mathbf{t}_{x}\right]$ is the matrix representation of the cross product with \mathbf{t}.
Elli Angelopoulou if $\mathbf{t}=\left[\begin{array}{l}t_{x} \\ t_{y} \\ t_{z}\end{array}\right] \quad$ then $\left[\mathbf{t}_{x}\right]=\left[\begin{array}{ccc}0 & -t_{z} & t_{y} \\ t_{z} & 0 & -t_{x} \\ -t_{y} & t_{x} & 0\end{array}\right]$

Epipolar Constraint Equations

■ The equation $\mathbf{p}^{T} \mathbf{E p}=0$ is the algebraic representation of epipolar constraint.
■ The vector that corresponds to the epipolar line / that is associated with point p^{\prime} is $\mathbf{l}=\mathbf{E p}{ }^{\prime}$.
■ Similarly, the vector that corresponds to the epipolar line I^{\prime} that is associated with point p is $\mathbf{I}^{\prime}=\mathbf{E}^{T} \mathbf{p}$.

- Thus, once the essential matrix \mathbf{E} is recovered, one can reduce the search space for finding the corresponding points to a 1D space.

Epipolar Constraint -Uncalibrated case

- For uncalibrated cases, the matrices (rotation \mathbf{R} and translation \mathbf{t}) that express point p ' in terms of the coordinate system of camera O must also incorporate the intrinsic camera parameters.
- Instead of $\mathbf{p}^{T} \mathbf{E p}{ }^{\prime}=0$ we have:

where $\mathbf{F}=\mathbf{K}^{-T} \mathbf{E K} \mathbf{K}^{\prime-1}$ and \mathbf{K} and \mathbf{K}^{\prime} are the intrinsic parameter matrices of cameras O and O^{\prime} accordingly
- \mathbf{F} is called the fundamental matrix.

Multiple Views

- For binocular setups the epipolar constraint can be represented in a 3×3 matrix form, called the fundamental matrix.
- When we have 3 images the epipolar constraint is represented by a $3 \times 3 \times 3$ structure, called the trifocal tensor.
- When we have 4 images the epipolar constraint is represented by a $3 \times 3 \times 3 \times 3$ structure, called the quadrifocal tensor.

Key Points of Epipolar Geometry

- For each pair of corresponding points p and p ' in camera coordinates (Cartesian metric coordinate. system), the following relationship holds:

$$
\mathbf{p}^{T} \mathbf{E p} \mathbf{p}^{\prime}=0
$$

\mathbf{E} is the essential matrix

- For each pair of corresponding points q and q^{\prime} in pixel (image) coordinates the following relationship holds:

$$
\mathbf{q}^{T} \mathbf{F q}^{\prime}=0
$$

\mathbf{F} is the fundamental matrix

Key Points of Epipolar Geometry 2

- The epipolar line l^{\prime} that corresponds to the point q has the form $l_{1}^{\prime} x+l_{2}^{\prime} y+l_{3}^{\prime} z=0$, where $\mathbf{l}^{\prime}=\left(l_{1}^{\prime}, l_{2}^{\prime}, l_{3}^{\prime}\right)$ and is given by:

$$
\mathbf{l}^{\prime}=\mathbf{F}^{T} \mathbf{q}
$$

where x, y, z are in the local coordinate system of camera O^{\prime}.

- The epipolar line / that corresponds to the point q^{\prime} has the form $l_{1} x+l_{2} y+l_{3} z=0$, where $\mathbf{l}=\left(l_{1}, l_{2}, l_{3}\right)$ and is given by: $\mathbf{l}=\mathbf{F q}^{\prime}$
where x, y, z are in the local coordinate system of camera O.

The Essential Matrix in Practice

- What does the epipolar plane depend on? A point P in the scene and the camera COPs O and O^{\prime}. It varies from point to point.
- What does the matrix E (similarly F) depend on? The rotation \mathbf{R} and the translation \mathbf{t} between the two camera coordinate systems. No dependence on the scene.

■ So... recover E (or F) once, keep the camera setup stable and then reuse it for every scene point.
■ How do we recover \mathbf{E} (or \mathbf{F})?

Estimation of the Fundamental Matrix.

- Assume known correspondences of n points between the two images.
- You have n equations of the form:

$$
\mathbf{p}_{i}^{T} \mathbf{F} \mathbf{p}_{i}{ }^{\prime}=0, \quad i=1 \ldots n
$$

- \mathbf{F} is a 3×3 matrix $=>9$ unknowns.
- If you have 8 well spread correspondences, you can determine \mathbf{F}.
- Why 8? The n equations are homogeneous linear equations, i.e. all equations have a zero as a constant in the right hand side. So the solution is unique up to a scaling factor.

Over-determined System

■ If $n>8$, then we have an over-determined system. Use SVD (Singular Value Decomposition).
■ How? Build a nx9 matrix A which contains the coefficients of the n equations: $\mathbf{p}_{i}{ }^{T} \mathbf{F} \mathbf{p}_{i}{ }^{\prime}=0, \quad i=1 \ldots n$
$■$ Run SVD on A. It decomposes A to: $\mathbf{A}=\mathbf{U D V}^{T}$

- D diagonal matrix; its elements are called singular values.
- U is an $n \times n$ orthogonal matrix
- D is an $n \times 9$ diagonal matrix
- V is a 9×9 orthogonal matrix

■ In theory, the solution to \mathbf{F} (the value of its 9 unknowns) is the column of \mathbf{V} that corresponds to the only null singular value of \mathbf{A}, i.e. the only zero value on the diagonal.

Estimating F in Practice

- In reality, due to noise, quantization, numerical errors, inaccuracies in the n correspondences, there is usually no null singular value.
- Thus, in practice we use the minimum singular value and its corresponding column in \mathbf{V}.

$$
\mathbf{F}=\mathbf{V}\left(\mathrm{Col}_{m}\right)
$$

where s_{m} was the minimum diagonal value in \mathbf{D} and was located in column m in D.

Estimating F in Practice - continued

- However, this whole process had inaccuracies. The resulting \mathbf{F} may not be singular. So, run SVD again, this time on \mathbf{F}.

$$
\mathbf{F}=\mathbf{U}_{F} \mathbf{D}_{F} \mathbf{V}_{F}^{T}
$$

- Then build the matrix \mathbf{D}^{\prime} from \mathbf{D}_{F} where with the minimum singular value s_{m} of \mathbf{D}_{F} is replaced by 0 .
- Compute a new fundamental matrix which is singular:

$$
\mathbf{F}^{\prime}=\mathbf{U}_{F} \mathbf{D}^{\prime} \mathbf{V}_{F}^{T}
$$

- \mathbf{F}^{\prime} is a good estimate of the fundamental matrix.

Longuet-Higgins Eight-Point Algorithm

1. Let \mathbf{A} be an $n \times 9$ matrix of the coefficients of the n eqs.:

$$
\mathbf{p}_{i}^{T} \mathbf{F} \mathbf{p}_{i}^{\prime}=0, \quad i=1 \ldots n
$$

2. Apply SVD on \mathbf{A} and find matrices $\mathbf{U}, \mathbf{D}, \mathbf{V}$ such that

$$
\mathbf{A}=\mathbf{U D V}^{T}
$$

3. The entries of \mathbf{F} are the components of the column of \mathbf{V} corresponding to the least singular value of A.
4. Enforce the singularity constraint by applying SVD on \mathbf{F}

$$
\mathbf{F}=\mathbf{U}_{F} \mathbf{D}_{F} \mathbf{V}_{F}{ }^{T}
$$

5. and creating $\mathbf{D}^{\prime}=\mathbf{D}_{F}$ with the smallest singular value of \mathbf{D}_{F} replaced by 0 .
6. Get new estimate of \mathbf{F}, call it \mathbf{F}^{\prime}, such that

$$
\mathbf{F}^{\prime}=\mathbf{U}_{F} \mathbf{D}^{\prime} \mathbf{V}_{F}^{T}
$$

Fundamental Matrix Video

The video is courtesy of Daniel Wedge. You can view it at the following web-site: http://danielwedge.com/fmatrix/

