## Image Capture by a Digital Camera



## Prof. Dr. Elli Angelopoulou

Pattern Recognition Lab (Computer Science 5)
University of Erlangen-Nuremberg

## Light-surface-camera



Figure 2.5 Illustration of the basic radiometric concepts.

## CCD and CMOS cameras

- A photosensitive chip absorbs photons and converts them to electrical charges.
- The generated charge is always proportional to the radiation falling on the chip.
- Charges are collected differently in CCD and CMOS cameras.
- The most commonly used cameras are made of silicon and are sensitive in the 300-1000nm range.
- Different photosensitive materials must be used for other parts of the electromagnetic spectrum, e.g. InGaAs for thermal cameras.


## Charge Generation

- Photons free electrons.

■ The free electrons are collected in capacitors.

- The wavelength of the photons directly determines how many electrons will be freed.
■ Quantum efficiency: $\quad Q E=\frac{\# \text { of electrons } / \mathrm{sec}}{\# \text { of photons } / \mathrm{sec}}$



## Charge-Coupled Device (CCD) Sensor

- Main components: A photodetector and a shift register.
- Each capacitor transfers its contents to its neighbor.
- The last capacitor in the line transfer its charge into a charge amplifier.
- The amplifier converts the charge into a voltage.
- The sequence of voltages is sampled, digitized and stored in memory.


Figure 1
Images courtesy of Olympus.

## CCD Sensor (continued)

- Serial operation
- Advantages:
- cheap (easy to manufacture using existing fabrication techniques),
- widely-tested
- uniform response across pixels (especially in low signal cases)
- Disadvantages:
- slow,
- challenging scalability
- entire image must be read out (no ROI)
- overexposure can affect neighboring pixels (blooming)


## CMOS Sensor <br> Complementary metal-oxide-semiconductor

■ Main components: Photodetector and an active amplifier. (It is an integrated circuit)
■ One amplifier per pixel.
■ Per pixel: a photodiode + a number of transistors.

- Example setup: Each pixel is composed of a photodiode, a transfer gate, a reset gate, a selection gate and a source-follower readout transistor (a 4T cell).

Complementary Metal Oxide Semiconductor Device


## CMOS Sensor <br> Complementary metal-oxide-semiconductor

- Parallel operation
- Advantages:
- fast,
- lower power consumption,
- on-chip processing,
- can read a subregion of an image (ROI)
- Disadvantages:
- challenging to manufacture (packing transistors on top of a pixel),
- lower light sensitivity
- could produce non-uniform response across pixels


## Color Cameras

■ Most color cameras give a triplet of color values per pixel ( $\mathrm{R}, \mathrm{G}, \mathrm{B}$ ).

- Either a separate chip is used per color, or a filter composed of a mosaic of smaller individual color filters is laid over the CCD chip.

Bayer filter 50\% G, 25\% R, 25\% B

RGBE filter
equal distribution
3 CCD chip


Images courtesy of Wikipedia htttp://en.wikipedia.org

## Digital Image

- We get a rectangular grid of pixels (picture elements). Each pixel has:
- A unique location
- Some value(s) associated with it.
- For grayscale images, the pixel value is a single integer which is proportional to the amount of light (irradiance) incident on the corresponding patch of the photosensitive chip.
- For color images, each pixel has three values:
- a Red value, which corresponds to the amount of light incident on the corresponding sensor area and is in the range of wavelengths centered around 650 nm .
- a Green value, which corresponds to the amount of light incident on the corresponding sensor area and is in the range of wavelengths centered around 550 nm .
- a Blue value, which corresponds to the amount of light incident on the corresponding sensor area and is in the range of wavelengths centered around 450 nm .


## Example Image



## Pixel value

- The value $I[p]$ recorded at a pixel $p$ is proportional to the irradiance $E(p)$ incident on the photosensitive cell that corresponds to pixel $p$.
- $I[p]=\mathrm{g} E(p)^{1 / \gamma}+d$
where $\mathrm{g}=$ camera gain. A scaling factor introduced by the A/D conversion process.
$\gamma=$ camera gamma (indicating non-linear response). Photographic film, old CRT monitors and LCD monitors have non-linear responses
$d=$ camera dark current. No light incident on the sensor still generate a signal. Free electrons (i.e. from heat) are captured by the capacitor and create non-zero values per pixel.


## Non-traditional Cameras

- Omni-directional cameras
- Light-field cameras
- Polarization cameras
- High Dynamic Range (HDR) cameras
- Thermal (mid-IR) cameras
- Multispectral (hyperspectral) cameras


## Omni-directional cameras

- Omni-directional $=$ in all directions = panoramic
- Motivation: obtain a large field of view.
- Different types of sensors:
- Rotating camera (first patented in 1843)
- Camera with a fish-eye lens (first built by Nikon 1962)
- Cluster of cameras
- Combination of mirrors and lenses (Yagi and Kawato 1990)
- Surveillance and navigation applications.


Image courtesy of Seitz Phototechnik AG http://ww.roundshot.ch


Image courtesy of Nikon "Eye of Nikon" http://ww.mir.com.my/br/photography


Image courtesy of Immersive Media http://ww.immersivemedia.com


Image courtesy of FullView http://ww.fullview.com

## A multi-camera example

- The ASTRO-Sensor series is an example of an omni-directional stereo setup that can obtain full color images and depth images at 15 fps .


The Jupiter model is composed of 20 stereo units. It requires 10 PCs to process the stereo data.
The Venus series is better suited for navigation applications.


## Catadioptric sensor design

- A catadioptric sensor uses a combination of mirrors (catoptron) and lenses (dioptrics) and cameras in a carefully arranged configuration to capture a much wider field of view.
- Typically curved mirror shape.

■ Single image with usually wider field of view than fish-eye lenses.

- No moving parts.
- No registration.



## Catadioptric cameras



## Captured image often needs to be unwarped.



Images courtesy of Neovision http://ww.neovision.cz

## Mirror Design

- In most catadioptric cameras, the mirror is a swept conic section:
- Cone
- Sphere
- Ellipsoid
- Hyperboloid
- Paraboloid

- In a convex surface of revolution, knowing the shape of the generating curve is sufficient for knowing the shape of the mirror.

Image courtesy of Keith G. Calkins http://www.andrews.edu/~calkins/ math.webtexts/geom09.html


Calibrating scene at GRASP Lab, UPenn


Omnicam with spherical mirror


Omnicam with parabolic mirror


Omnicam with conic mirror

## Why Conics?

Single center of projection (Fixed Viewpoint constraint)

- almost -


Traditional perspective projection


Image courtesy of Davide Scaramuzza http://asl.epfl.ch/~scaramuz/

Image courtesy of Shree Nayar
http://www1.cs.columbia.edu/CAVE/projects/non-single

## Conic Mirror

- Center of projection at the apex of the cone.
- Either place the pinhole at the apex (omnicam of limited value) or place the pinhole on the axis of the cone at some distance $d$ and get a locus of effective viewpoints which lie on a circle.



## Spherical mirror

- Center of projection at the center of the sphere.
- Consequence: No single effective viewpoint, but rather a computable locus of points.



## Ellipsoidal mirror

- Center of projection at the foci of the ellipsoid.

■ Unrealizable solution.


## Paraboloidal mirror

- Center of projection at the focus of the paraboloid.
- Realizable solution with orthographic projection lens.



## Hyperboloidal mirror

- Center of projection at the foci of the hyperboloid.
- Realizable solution with perspective projection lens.



## Light Field cameras

- Also known as plenoptic cameras

■ Motivation: Better focused images
■ Refocusing after data capture

- By placing an array of lenses in front of the sensing chip, one simultaneously captures the same scene from somewhat different perspectives and/or focal lengths.


Image courtesy of Adobe

- Commercially available at https://www.lytro.com/camera


Image courtesy of Ren Ng et al http://graphics.stanford.edu/papers/lfcamera


Image courtesy of MERL

## Polarization cameras

- Polarization of light conveys important material information and enhances object visibility in some bad-weather conditions.
■ Animals (shrimp, birds) can sense light polarization and use it for orientation and species identification

■ Idea: Place differently oriented linear polarizers in-front of the camera lens.


A Real (left) versus a decoy tank (right) as imaged by a traditional grayscale and a polarization camera. Images courtesy of L. Wolff.

## Underlying principle

- Most of the light around us is unpolarized.
- A linear polarizer will only transmit light waves that are oscillating in its orientation.
- Naturally occurring light can be partially linearly polarized: skylight on a sunny day (except sunrise and sunset), underwater (55\% linearly polarized).
- Some materials, e.g. grass, diffuse paints, plastics, marine animals will depolarize light.
- Materials like metals will preserve polarization.
- Other materials like water, glass, dirt, rocks polarize light.
- In bad weather (fog) the scattered light and the directly transmitted light have distinct polarization behavior.
- Drawback: dim images


Image courtesy of Olympus
http://www.olympusmicro.com/primer/lightandcolor/polarizedlightintro.html


Image courtesy of Larry Wolff

## High Dynamic Range cameras

- A high dynamic range image is obtained by taking multiple images using different exposure times.
- Current HDR cameras are CMOS based. They use multiple exposure times per scene and integrate the individual exposure readings.


Images courtesy of S. Nayar.

## Multispectral cameras

■ Idea: Instead of capturing 3 color values ( $R, G, B$ ) per pixel, light in 10 s or 100 s of very narrow color bands.

- Hardware: place color glass filters in-front of the lens, or use electronically tunable filters


Images courtesy of CRI and OKSI.

