Optimization Algorithms
 Gradient Descent, Coordinate Descent

Dr. Elli Angelopoulou

Lehrstuhl für Mustererkennung (Informatik 5)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Optimization Algorithms

- Solving optimization problems is a key component of pattern recognition.
- Many of the optimization problems are quite complex. Deriving an analytic solution is not trivial.
- An alternative is to use an algorithm to (iteratively) compute an (approximate) solution to the optimization problem.
- A widely used optimization algorithm is gradient descent (also known as steepest descent).
- A closely related algorithm for simultaneous solution of multiple parameters is coordinate descent.

Main Idea of Gradient Descent

- In order to find a local minimum of a function one can take steps proportional to the negative of the gradient of the function at the current point.
- Given a real valued function $f(\vec{x}) \in R$, which is differentiable at a point $\vec{x}_{j} \in R^{n}$, then at point \vec{x}_{j}, the function $f(\vec{x})$ decreases the fastest in the direction of the negative gradient $-\nabla f\left(\vec{x}_{j}\right)$ at \vec{x}_{j}, where

$$
-\nabla f(\vec{x})=\left(\frac{\partial f(\vec{x})}{\partial x_{1}}, \frac{\partial f(\vec{x})}{\partial x_{2}}, \ldots, \frac{\partial f(\vec{x})}{\partial x_{n}}\right)
$$

Gradient Descent

■ Thus if one "takes a small step s " on $f(\vec{x})$ at point \vec{x}_{j} in the direction of the negative gradient $-\nabla f\left(\vec{x}_{j}\right)$, (s)he moves closer to the local minimum of the function $f(\vec{x})$.

$$
\begin{gathered}
s=-\eta \nabla f\left(\vec{x}_{j}\right) \\
\vec{x}_{j+1}=\vec{x}_{j}-\eta \nabla f\left(\vec{x}_{j}\right)
\end{gathered}
$$

■ Hence, one can start with an initial guess \vec{x}_{0} for a local minimum of a function and follow a sequence of such steps $\vec{x}_{0}, \vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{j}, \vec{x}_{j+1}, \ldots$ to gradually reach the local minimum.

Illustration of Gradient Descent

Illustration of Gradient Descent 2

Illustration of Gradient Descent 3

Illustration of Gradient Descent 4

Gradient Descent Algorithm

$k=0$

Initialize x_{k}
while x_{k} is not a minimum compute gradient D_{k} at point x_{k} compute step $s_{k}, s_{k}=-\eta_{k} D_{k}$

$$
\begin{aligned}
& x_{k+1}=x_{k}+s_{k} \\
& k=k+1
\end{aligned}
$$

end

- The size of the step depends on
- The magnitude of the gradient
- The value of the scalar η_{k}

Gradient Descent and Global Minimum

■ Gradient descent converges to the closest local minimum.

- It computes the global minimum of a function only for unimodal functions.
- For functions with multiple minima, there is no guarantee that gradient descent will converge to the global minimum.
■ A solution (still no guarantee): Run gradient descent multiple times starting from distinct initial points.

Remarks on Gradient Descent

■ Picking an appropriate \mathbf{x}_{0} is crucial, but also problemdependent.
■ The stopping criteria are not clearly defined.
■ For solving maximization problems, one can simply step in the direction of the gradient $\nabla f\left(\vec{x}_{j}\right)$.
■ A well-known problematic behavior of gradient descent is its "zig-zagging" track in functions with very flat local minima (maxima), that approximate plateaus.

Examples of Zig-Zagging Behavior

Plot of the Rosenbrock function, which has a a very narrow and flat valley that contains the minimum. It takes many small steps, with localized zig-zagging behavior
 to eventually converge to the minimum.

Coordinate Descent

- It is closely related to gradient descent.
- It is designed for optimization problems where multiple parameters of the same optimization function must be simultaneously searched for the optimal solution.

$$
\hat{\vec{x}}=\underset{x_{1}, x_{2}, \ldots x_{n}}{\arg \min } f(\vec{x})
$$

■ Main idea: Apply gradient descent in a one coordinate axis at a time. In other words, first search for x_{1}, then search for x_{2}, then for x_{3} and so on. For example , during the $(k+1)$ th iteration:

$$
x_{i}^{k+1}=\underset{y}{\arg \min } f\left(x_{1}^{k+1}, x_{2}^{k+1}, \ldots, x_{i-1}^{k+1}, y, x_{i+1}^{k}, x_{i+2}^{k}, \ldots x_{n}^{k}\right)
$$

Coordinate Descent - continued

- In coordinate descent, unlike gradient descent, instead of descending along the direction of the gradient, one moves along a coordinate direction.
- In coordinate descent one cycles through the different coordinate directions.
- At each iteration one descents once through each coordinate direction.

Coordinate Descent - continued 2

- Coordinate descent has similar convergence properties as gradient descent.
- It can also get stuck in local minima.
- However, it is easy to implement and sometimes faster to compute. No gradient computation.
- Drawback: No convergence proof.
- A well-known problem of coordinate descent is that it may stop descending for non-smooth functions.

Non-Smooth Functions and Coord. Descent

Plot courtesy of Wikipedia, http://en.wikipedia.org/wiki/Coordinate descent

Resources

1. Some of the material on gradient descent is adapted from the slides by P. Smyth http://www.ics.uci.edu/~smyth/courses/cs175/slides5b gradient search.ppt
