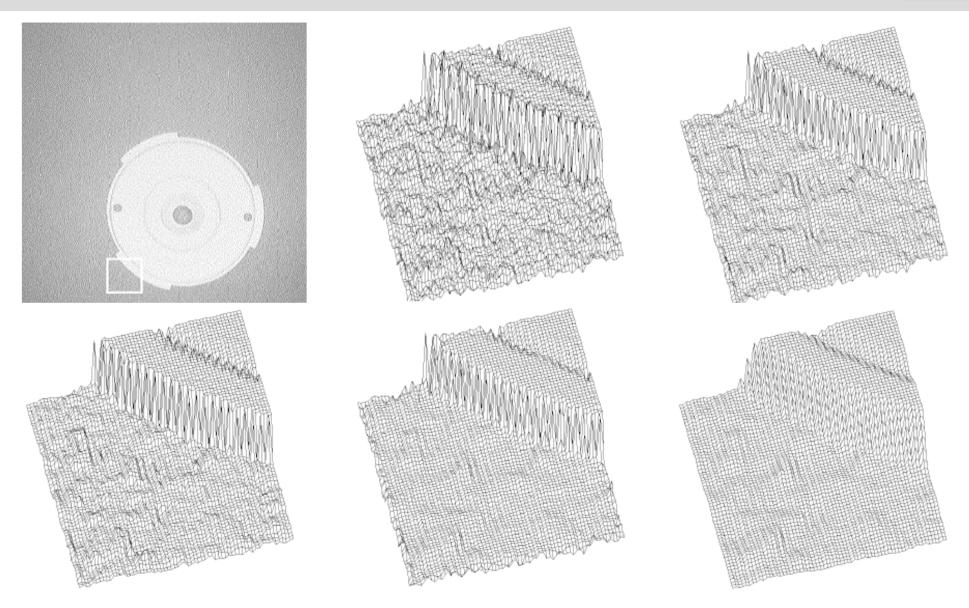

# Pre-processing Histogram Equalization and Thresholding



#### **Dr. Elli Angelopoulou**

Lehrstuhl für Mustererkennung (Informatik 5) Friedrich-Alexander-Universität Erlangen-Nürnberg

# Pattern Recognition Pipeline




- The goal of pre-processing is to transform a signal f to another signal  $h\,$  so that the resulting signal  $h\,$ 
  - makes subsequent processing easier
  - makes subsequent processing better (more accurate)
  - makes subsequent processing faster

# Pre-processing Example



Seite 3



## Low Contrast Signal



Quite often the captured image has a small dynamic range, i.e. all the pixels in an image have values that are within a small range of values, typically much smaller than the capability of the sensor.



Image courtesy of Phillip Capper, http://en.wikipedia.org/wiki/File:Unequalized Hawkes Bay NZ.jpg

## Enhancement of Low Contrast Signal

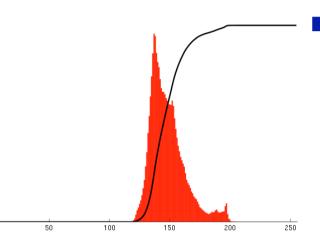


One goal of pre-processing is to improve the contrast by changing the intensity values in the image so that they now cover a wider range of values.

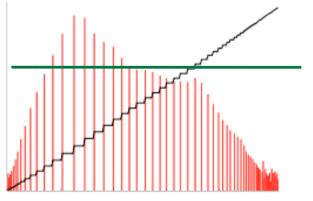


Images courtesy of Phillip Capper, <u>http://en.wikipedia.org/wiki/File:Unequalized Hawkes Bay NZ.jpg</u>, <u>http://en.wikipedia.org/wiki/File:Equalized Hawkes Bay NZ.jpg</u>

## **Histogram Equalization**




- Histogram equalization is a method for improving low images with a limited range of values.
- It achieves that by redistributing the intensities in the image.
- It is based on the frequency with which different intensity values appear in the image (*histogram*).
- It effectively spreads out the most frequently used intensities.
- The goal of histogram equalization is to produce an image where the various intensity values appear almost equally often in the image (*uniformly distributed*)

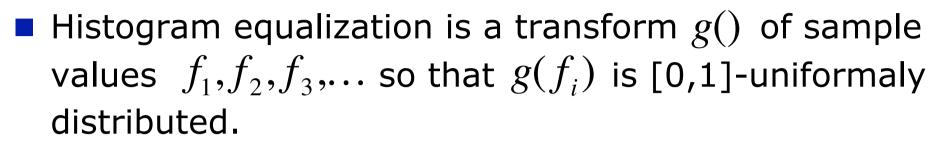

## Image Histogram












A histogram plots for each gray level value the frequency with which that value occurs (shown in red)

 The goal of histogram equalization is to have an almost horizontal distribution of values.

Images courtesy of Phillip Capper, <a href="http://en.wikipedia.org/">http://en.wikipedia.org/</a>

# Formal Definition of Histogram Equalization



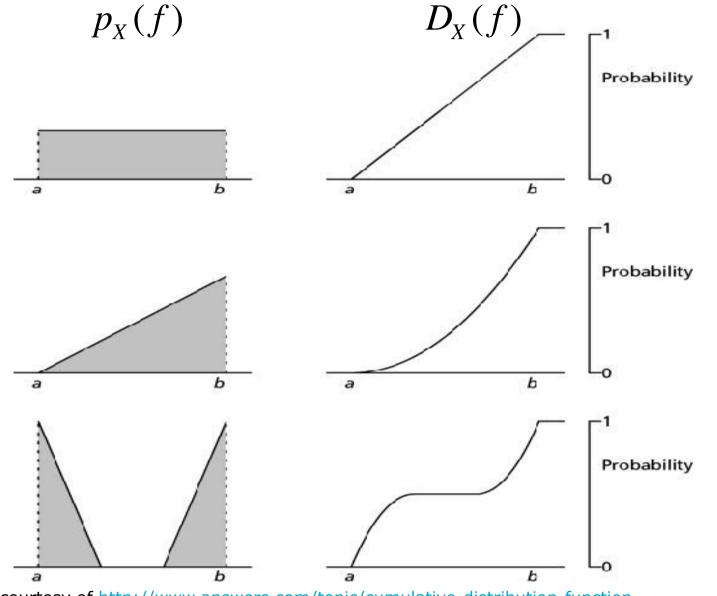
- Such a transform is computed using the cumulative distribution function (cdf) D().
- Let  $p_X(f)$  be the probability distribution function of f.
- The cumulative distribution function of f is

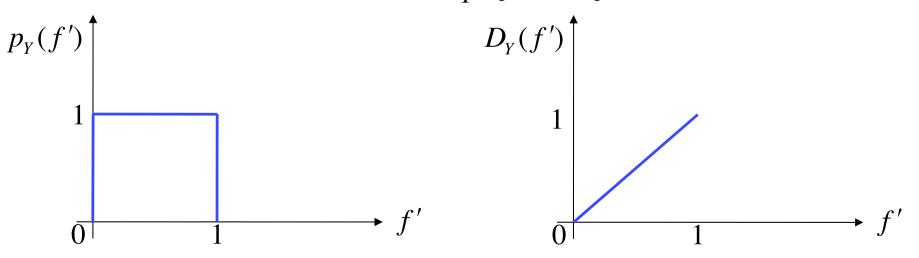
$$D_X(f) = \int_{-\infty}^f p_X(h) dh$$

• cdf is always a monotonic function that at infinity approaches 1,  $\lim_{f \to \infty} D_X(f) = 1$  and  $\lim_{f \to -\infty} D_X(f) = 0$ .

#### PDF and CDF plots







Image courtesy of <a href="http://www.answers.com/topic/cumulative-distribution-function">http://www.answers.com/topic/cumulative-distribution-function</a>

#### Seite 9

## CDF of a CDF



- Let  $f' = D_X(f)$ .
- Claim: f' is [0,1]-uniformly distributed.
- f' is in [0,1] by definition
- Still need to show that f' is uniformly distributed.
- How does the cdf look like for a uniform distribution?
- Claim: If  $p_Y(f')$  is a [0,1]-uniform distribution, then its cdf is the variable itself,  $D_Y(f') = f'$  and vice-versa.



## CDF of a CDF - continued



Recall that  $f' = D_X(f)$  is itself a cdf function and as such it is a monotonic function. This means that:

$$f_1 \le f_2 \Longrightarrow D_X(f_1) \le D_X(f_2) \Longrightarrow f_1' \le f_2'$$

• How does the cdf of a cdf look like? How does  $D_Y(f')$  look like?

$$D_Y(f_1') = p_Y(f' \le f_1') = p_Y(D_X(f) \le D_X(f_1)) =$$
  
=  $p_X(f \le f_1) = D_X(f_1) = f_1'$ 

But if  $D_Y(f') = f'$  then f' has a [0,1]-uniform distr.

So when we use the mapping  $f' = D_X(f)$  the values end-up being uniformly distributed.

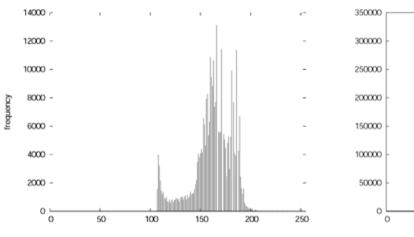
# Histogram Equalization Algorithm



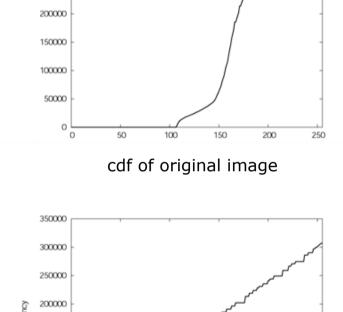
Seite 12

- 1. Compute the histogram of a given image
- 2. Compute its cumulative distribution function.
- 3. Break the vertical axis of the cdf plot, into *n* equidistant blocks, where *n* is the number of gray values in the output image.
- 4. Then all the pixel values (in the horizontal x-axis) in the first block of the cdf get mapped to one gray value. All the pixel values in the 2nd block of the cdf get mapped to the next pixel value etc.
- 5. In the resulting image each of the *n* intensities has the same probability of occurring. The pixels are spread evenly across the entire range of these *n* pixel values. The image has the highest possible contrast.

## Histogram Equalization Example







Original image

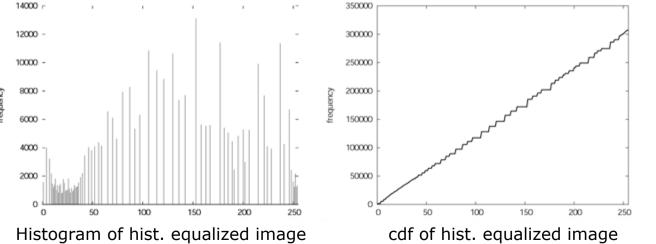



Image after histogram equalization



#### Histogram of original image



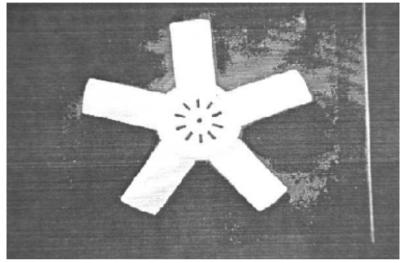


Images courtesy of James Matthews, <a href="http://www.generation5.org/content/2004/histogramEqualization.asp">http://www.generation5.org/content/2004/histogramEqualization.asp</a>

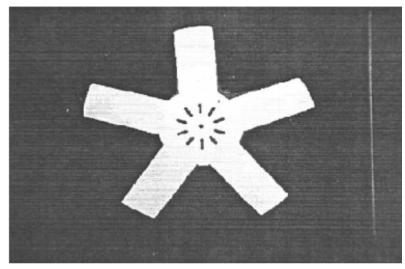
# Some Comments on Histogram Equalization



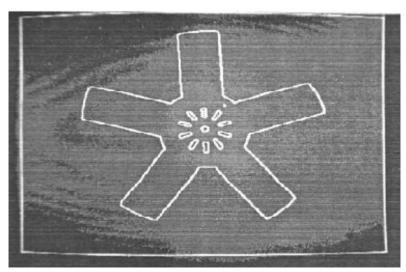
- It is a straightforward, easy to implement technique.
- It is not computationally expensive.
- Works well in images where both the foreground and the background are dark (or both are bright).
- In cases where spatial correlation is more important that the intensity values themselves, a histogram equalized image facilitates further detection and analysis.
- However, histogram equalization often produces unrealistic looking images, or can introduce undesirable effects.


# Thresholding




- **Thresholding** is the process of converting a grayscale image of  $L_1$  gray levels, into one of  $L_2$  gray levels, where  $L_2 << L_1$ , based on "border" values.
- Typically  $L_2 = 2$ , in which case the output is a binary image, i.e. an image with only 2 gray-levels, 0 and 1.
- The process of converting an image to a 2 level image, it is called **binarization**.
- Threshold = brink, border, verge.
- Example applications:
  - Quality control system where the perimeter of the product needs to be evaluated. Light colored products on a dark conveyor belt.
  - Contrast Enhanced CT, where the blood vessels look really dark on a light background. Goal is to measure the vessel geometry.

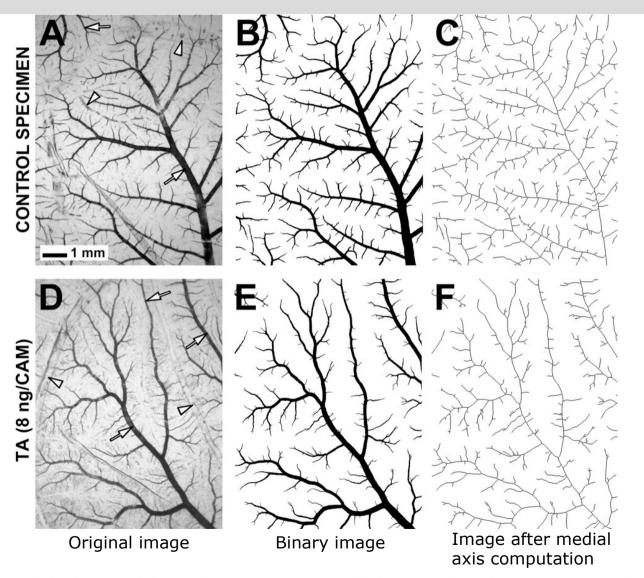
## Thresholding Example






Original image




Binary image after thresholding



Perimeter detection on binary image

#### Another Thresholding Example

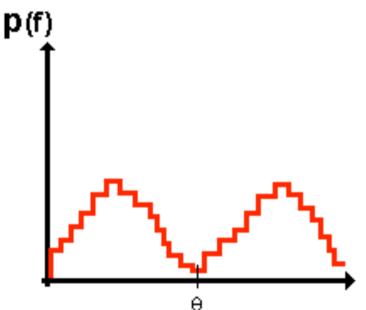




Images by T.L. McKay et al., "Selective Inhibition of Angiogenesis in Small Blood Vessels and Decrease in Vessel Diameter throughout the Vascular Tree by Triamcinolone Acetonide", Invest. Ophthalmol. Vis. Sci., Vol. 49, No. 3, March 2008, pp. 1184-1190, http://www.iovs.org/content/49/3/1184.full

## How Does Thresholding Work?



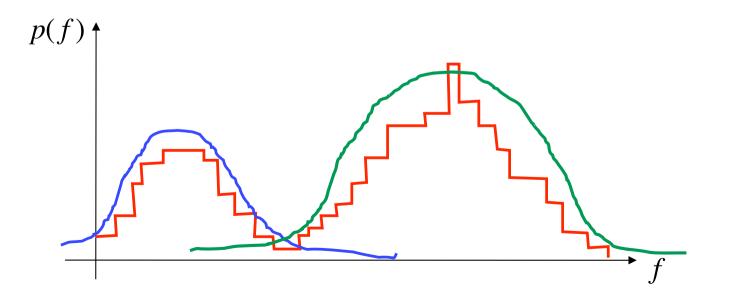

Thresholding transformation  $T(f_{ij})$  for  $L_2 = 2$ :  $T(f_{ij}) = \begin{cases} 0 & \text{if } f_{ij} \leq \theta \\ 1 & \text{otherwise} \end{cases}$ 

• Which value  $\theta$  should we use?

- How can we choose a value for θ based on what we have done so far in class?
- We know how to compute histograms, cdfs and break the cdf into blocks of equal width.
- Idea: Build the cdf and break into two blocks of equal width.
- May not result in meaningful binary images. The output image will have an equal number of 0s and 1s.

## **Bimodal Histograms**

- The simplest binarization algorithms assume that the background has one intensity value and the object(s) of interest have another intensity value. With all the shading variations we end up with a bimodal histogram.
- Bimodal histogram: a histogram with two local maxima (one for foreground and one for background).
- Idea: pick a value between the two maxima and use it as a threshold value θ.
- Everything below the threshold is assigned a 0 and everything above is assigned a 1.

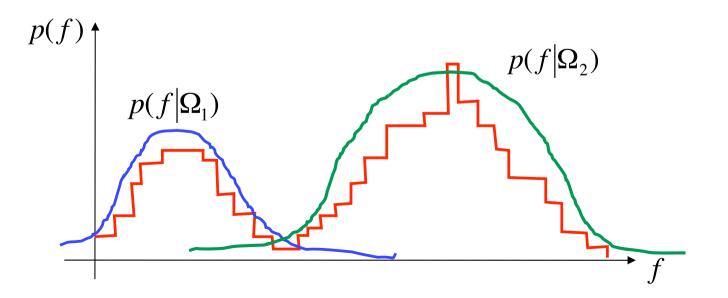







Seite 20

- A rigorous method for selecting a threshold value that is close to the minimum between the two modes is to *treat each mode as a Gaussian*.
- Methodology: Fit 2 Gaussians and compute their intersection.




## Intersection of Gaussians - continued



Seite 21

- One Gaussian describes the probability of a particular pixel value f occurring, given that we have a pixel that belongs to the background, i.e. a pixel that is in class  $\Omega_1$ ,  $p(f|\Omega_1)$ .
- The 2nd Gaussian describes the probability of a particular pixel value f occurring, given that we have a pixel that belongs to the foreground, i.e. a pixel that is in class  $\Omega_2$ ,  $p(f|\Omega_2)$ .



#### Sum of Gaussians



- If we have these 2 densities,  $p(f|\Omega_1)$  and  $p(f|\Omega_2)$ we can not just sum them up. Their sum will not be equal to 1, and the integral over<sub>x</sub> all possible values of a pdf of must sum up to 1:  $\int p(f)df = 1$ .
- Instead, we have to take under consideration the probability of each class occurring:

$$p(f) = p(\Omega_1)p(f|\Omega_1) + p(\Omega_2)p(f|\Omega_2)$$

where  $p(\Omega_1)$  is the probability of having a gray value that belongs to the 0-intensity class and  $p(\Omega_2)$  is the probability of having a gray value that belongs to the 1-intensity class.

#### Sum of Gaussians - continued



• How do we compute  $p(\Omega_1)$ ? Recall that  $p(\Omega_1)$  is the probability of having an gray value that belongs to the 0-intensity class. Thus,  $p(\Omega_1) = \frac{\# \text{pixels such that } \{f \le \theta\}}{p(\Omega_1) = \frac{\# \text{pixels such that } \{f \le \theta\}}{p(\Omega_1)}$ 

$$(1) = \frac{1}{\text{total } \# \text{ pixels in the image}}$$

and

$$p(\Omega_2) = 1 - p(\Omega_1)$$

The resulting sum satisfies the proper pdf behavior.

$$\int_{-\infty}^{\infty} p(f)df = p(\Omega_1) \int_{-\infty}^{\infty} p(f|\Omega_1)df + p(\Omega_2) \int_{-\infty}^{\infty} p(f|\Omega_2)df$$
$$\Rightarrow \int_{-\infty}^{\infty} p(f)df = p(\Omega_1) + p(\Omega_2) = 1$$



- If a pdf can be decomposed to a linear combination of Gaussian densities, then it is called a Gaussian mixture.
- Using Gaussian mixtures is a widely used technique in pattern recognition.
- If you have a random variable and you don't know its pdf, use a so-called **convex combination** of Gaussians to approximate it.
- The term convex combination denotes that coefficients, weights of the different Gaussians have to sum up to 1.

## **Computing the Intersection**

- Let  $\alpha = p(\Omega_1)$ .
- Replace  $p(f|\Omega_1)$  and  $p(f|\Omega_2)$  with Gaussian functions. Then,

$$p(f) \approx \alpha \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(f-\mu_1)^2}{2\sigma_1^2}} + (1-\alpha) \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(f-\mu_2)^2}{2\sigma_2^2}}$$

where  $\mu_1, \sigma_1$  are the mean and standard deviation of the Gaussian that approximates  $p(f|\Omega_1)$  and  $\mu_2, \sigma_2$  are the mean and standard deviation of the Gaussian that approximates  $p(f|\Omega_2)$ 

- We want to compute the intersection of the 2 Gaussians.
- At the point of their intersection we have

$$\alpha \frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-\frac{(f-\mu_1)^2}{2\sigma_1^2}} = (1-\alpha) \frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{(f-\mu_2)^2}{2\sigma_2^2}}$$

• We need to compute the value of f that satisfies this equation.



## Solving the Equality



To simplify the computations, we take the natural logarithm of the equation. The end result is a quadratic equation in f:

$$\ln\alpha - \ln(\sqrt{2\pi}) - \ln\sigma_1 - \frac{(f - \mu_1)^2}{2\sigma_1^2} = \ln(1 - \alpha) - \ln(\sqrt{2\pi}) - \ln\sigma_2 - \frac{(f - \mu_2)^2}{2\sigma_2^2}$$

- So far we assumed that we know the parameters of the 2 Gaussians  $\mu_1, \sigma_1, \mu_2, \sigma_2$ .
- But given an image, we have to compute these parameters before we can compute the intersection.

# Procedure for Intersection Computation

- So the whole process involves the following steps:
- 1. Compute the histogram.
- 2. Determine the values of  $\alpha, \mu_1, \sigma_1, \mu_2, \sigma_2$  that best fit the histogram.
- 3. Analytically compute  $\theta$ .
- This is a very computationally expensive process, which may not even fit the data very well.
- More often than not we have histogram with one large and considerably smaller hump.



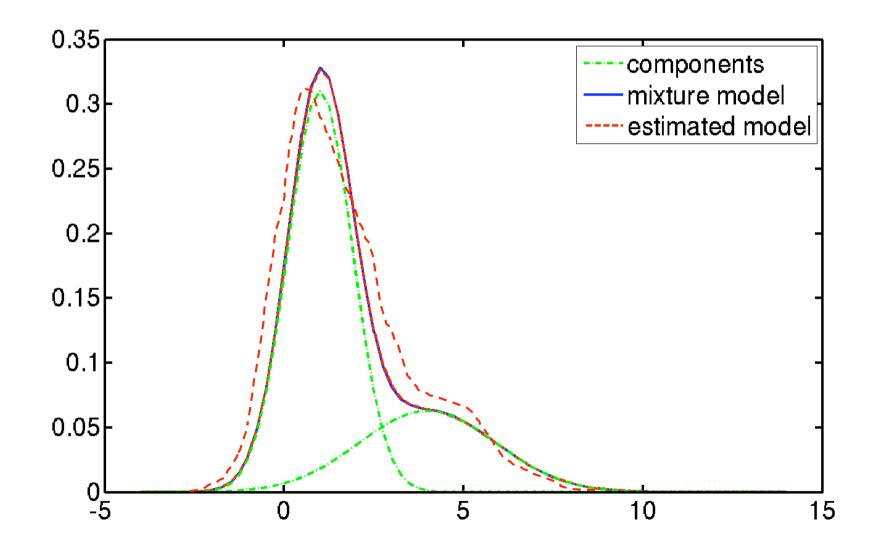
#### **Iterative Solution**



- An alternative, though sub-optimal, solution is to compute an estimate of the intersection iteratively:
- 1. Choose a threshold value  $\theta_0$ .
- 2. Estimate  $\mu_1, \sigma_1$  from the histogram values to the left of  $\theta_0$  and  $\mu_2, \sigma_2$  from the histogram values to the right of  $\theta_0$ . (see next slides)
- 3. Estimate  $\alpha$  from the ratio of the number of pixels that are on each side of  $\theta_0$ .
- 4. Compute an approximation error and adjust  $\theta_0$  accordingly. (see next slides)
- 5. Repeat steps 2 4 until the approximation error is minimal.

# Maximum Likelihood (ML) Estimation



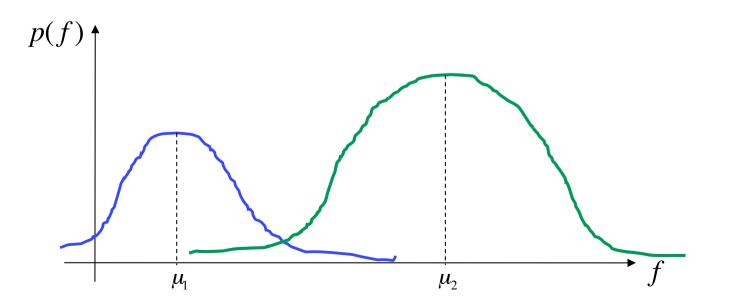

- Maximum Likelihood Estimation is a statistical method for fitting a statistical model to some data and providing estimates for the model's parameters.
- ML Estimators are particularly well-suited for Gaussian distributions.
- Specifically to compute  $\mu_1$ :
  - Use the methodology for computing the mean of a set of samples.
  - Sum up all the values to the left of  $\theta_0$  and divide by the number of pixels to the left of  $\theta_0$ .
- To compute  $\sigma_1$  use the formula for standard deviation:

$$\sigma_1 = \frac{1}{\# \text{pixels s.t.} (f \le \theta_0)} \sqrt{\sum_{f \le \theta_0} (f - \mu_1)^2}$$

Compute  $\mu_2, \sigma_2$  similarly

#### **Approximation Error**






Images courtesy of <a href="http://www.mathworks.de/matlabcentral/fx">http://www.mathworks.de/matlabcentral/fx</a> files/24867/2/gaussian mixture model.png

## **Optimal Thresholding**



- We are still studying images with bimodal histograms, which we approximate by 2 Gaussians.
- Can we express finding the threshold value  $\theta$  as an optimization problem?
- Devise an objective function, such that when you maximize (minimize) it, it will give you the optimal threshold value for binarization.



## **Optimality via Error Metric**



After binarization all the values f s.t.  $\{f \le \theta\}$  will be mapped to value  $f'_1$  and all the values f s.t.  $\{f > \theta\}$  will be mapped to value  $f'_2$ .

$$T(f) = \begin{cases} f_1' & \text{if } f_{ij} \le \theta \\ f_2' & \text{otherwise} \end{cases}$$

- Such a mapping causes some loss of info, some error.
- For  $f_1'$  the associated error is:  $\mathcal{E}_1 = \sum_{f=1}^{5} (f_1' f)^2$
- For  $f'_2$  the associated error is:

$$\varepsilon_2 = \sum_{f=\theta+1}^{f_{\max}} (f_2' - f)^2$$

#### **Error Metric**



- One criterion for selecting a threshold value is then choose a value for  $\theta$  that minimizes such errors.
- More specifically we want to compute:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \left( \sum_{f=1}^{\theta} (f_1' - f)^2 + \sum_{f=\theta+1}^{f_{\max}} (f_2' - f)^2 \right)$$

- Open issue: What do we use for  $f_1'$  and  $f_2'$ ?
- It is quite common to set  $f_1' = \mu_1$  and  $f_2' = \mu_2$ .
- $\blacksquare$  The minimization function clearly depends on  $\theta$  .

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \left( \sum_{f=1}^{\theta} (f_1'(\theta) - f)^2 + \sum_{f=\theta+1}^{f_{\max}} (f_2'(\theta) - f)^2 \right)$$

# **Optimal Thresholding Algorithm**



- 1. Initialize  $\theta_{\min}$  and  $E_{\min}$ .
- 2. Initialize  $\theta = 1$ .

Repeat

- 3. Compute  $f'_1(\theta) = \underset{\forall f \leq \theta}{\text{mean}}(f)$  and  $f'_2(\theta) = \underset{\forall f > \theta}{\text{mean}}(f)$ . 4. Compute the total squared error,  $E = \varepsilon_1 + \varepsilon_2$ .
- 5. If  $E < E_{\min}$
- **6.**  $E_{\min} = E$
- 7.  $\theta_{\min} = \theta$
- 8. Increment  $\theta$ .

Until you have tested all possible  $\theta$  values.

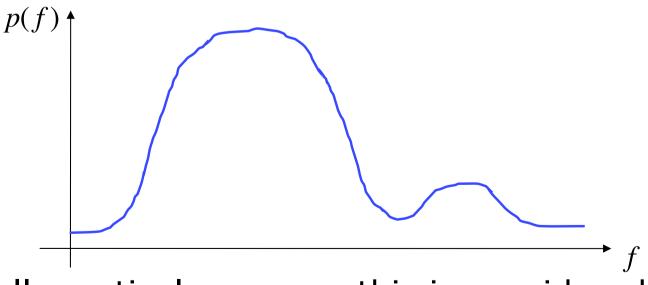


Another criterion for evaluating whether a given threshold value  $\theta$  is optimal is how closely the resulting Gaussians satisfy certain probability criteria.

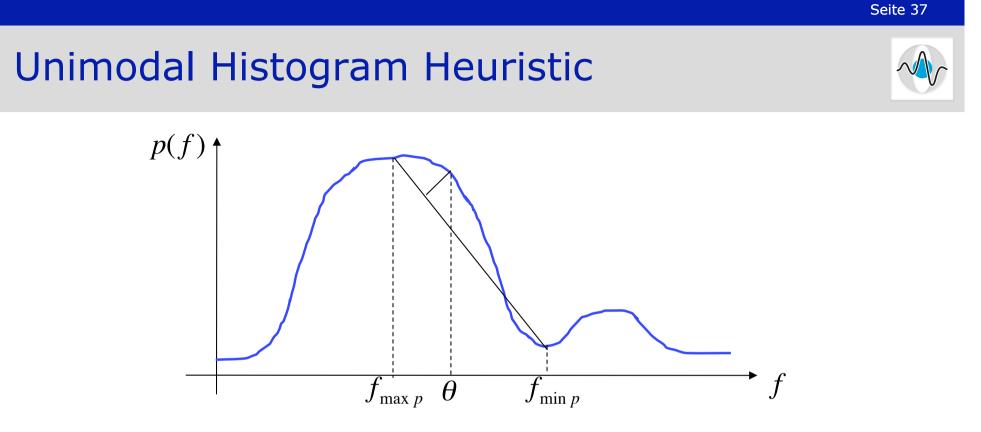
#### Otsu's thresholding criterion:

Choose a threshold  $\theta$  that maximizes the variance between the two classes.

For Gaussian mixtures this is equivalent to maximizing the distance between the 2 mean values.


$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} p(\Omega_1(\theta)) p(\Omega_2(\theta)) (\mu_1(\theta) - \mu_2(\theta))^2$$

- Note that the distance metric is multiplied by the prior class probabilities.
- Implementation as before.


## Unimodal Histogram



- What do we do when we don't have bimodal histograms and we still need to do binarization?
- Another common form of gray-value distributions is one with one big, dominant bell-curve (mode) together with a smaller one on one side.



For all practical purposes this is considered approximately a **unimodal** histogram.



- 1. Find the gray value with the highest number of occurrences,  $f_{\max p}$
- 2. Look for the gray value  $f_{\min p}$  which:
  - has close to zero occurrences
  - is as close as possible to the gray value with the highest number of occurrences
  - is at the long tail of the distribution.
- 3. Connect the two data points with a straight line.
- 4. Threshold  $\theta$  is the intensity of that point on the histogram which has the maximum perpendicular distance to the line.

## **Entropy Based Binarization**



- Entropy based binarization makes no assumptions about the shape of the histogram (bimodal, unimodal, etc.)
- It still uses probability information, i.e. how often a particular value occurs in the signal.
- It assumes that there are two distinct sources of data, e.g. foreground (which we will refer to as group/ class Ω<sub>1</sub>) and background (which we will refer to as group/class Ω<sub>2</sub>).
- It makes no assumptions (uses no prior information) about:
  - the range of values associated with each source
  - the frequency with which they occur
  - any separability characteristic of the sources

# Brief Introduction to Entropy

- Entropy in information theory is a measure of the uncertainty associated with a random variable.
- It is defined as:

$$H = -\int p(f)\log p(f)df$$

- The logarithm is used in order to capture the additive characteristic for uncertainty.
- Low entropy means low uncertainty. It implies that there is some prior, additional information available.

#### Example:

- Fair dice has high entropy. Each value is equally likely to occur.
- Loaded dice has low entropy. A particular value is more likely to occur.



# **Entropy and Thresholding**



- Consider the case where we have possibly a multimodal histogram and no information about the two sources: foreground and background.
- Lacking any additional information, we want to be as objective as possible when selecting a threshold  $\theta$ .
- We want to treat both sources as equally likely to occur.
- We don't want to introduce any bias.
- In terms of entropy, this means high uncertainty, i.e. maximum entropy.

# **Two-Source Entropy Computation**



• Let 
$$D(\theta) = \sum_{i=1}^{\theta} p(f_i)$$
.

$$H_1(\theta) = -\sum_{i=1}^{\theta} \frac{p(f_i)}{D(\theta)} \log \frac{p(f_i)}{D(\theta)}$$

Similarly the amount of uncertainty for the 2<sup>nd</sup> source (e.g. background) is:

$$H_2(\theta) = -\sum_{i=\theta+1}^{f_{\text{max}}} \frac{p(f_i)}{1 - D(\theta)} \log \frac{p(f_i)}{1 - D(\theta)}$$

## **Two-Source Entropy Computation**



- We don't want to introduce any bias for either the foreground or the background.
- We want both of them to be equally likely to occur.
- We want to maximize the entropy over both sources.

$$\hat{\theta} = \arg \max_{\theta} \left( H_1(\theta) + H_2(\theta) \right)$$

This method can be easily extended to multi-level thresholding. There are just more classes and thetas. The search space increases, but the method is the same.

# Entropy Thresholding Bibliography



- C.-I Chang, Y. Du, J. Wang, S.-M. Guo and P.D. Thouin, "Survey and Comparative analysis of Entropy and Relative Entropy Thresholding Techniques," *IEE Proc.-Vis. Image Signal Process.*, Vol. 153, No. 6, December 2006, pp. 837-850.
- J.N. Kapur, P.K. Sahoo and A.K.C. Wong, "A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram," *Comput. Vis. Graph. Image Process.*, Vol. 29, 1985, pp. 273–285.

## Automatic Thresholding Algorithm



- **1**. Initialize  $\theta$  to the average gray value:  $\theta = mean(f)$
- 2. Partition the data around  $\theta$  and compute the mean value  $\mu_1, \mu_2$  for each partition.
- 3. Select a new threshold value which is the mean of the two means:

$$\theta = \frac{1}{2}(\mu_1 + \mu_2)$$

4. Repeat steps 2 and 3 until the mean values  $\mu_1$  and  $\mu_2$  do not change in successive iterations.

# Histogram Equalization in Matlab

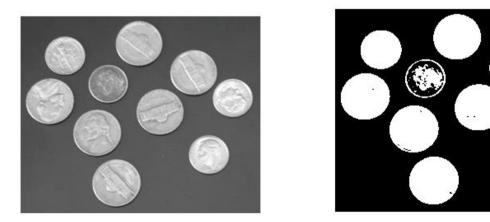


#### Matlab provides 2 versions of histogram equalization:

- The new image has uniformly distributed gray values. The user specifies the number of gray values.
- The new image has a distribution of gray values that closely matches an given image histogram.






Matlab example where the output image has approximately uniformly histogram distribution

Source: <a href="http://www.mathworks.com/help/toolbox/images/ref/histeq.html">http://www.mathworks.com/help/toolbox/images/ref/histeq.html</a>

#### **Binarization in Matlab**



- In Matlab the threshold value is explicitly given as a parameter in the built-in binarization function, im2bw().
- However, Matlab does provide a method for computing a threshold value for a given image.
- Their threshold value computation is based on Otsu's method.



Matlab example of an Otsu-based threshold value computation.