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Pattern Recognition Pipeline 

  Heuristic feature extraction methods 
  Projection to new orthogonal basis 

  Linear Predictive Coding (LPC) 

  Geometric Moments 

  Wavelets 

  Analytic feature extraction methods 

  Feature selection 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ

Learning Training samples 
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Analytic Methods for Feature Computation 

  Idea: Construct a feature vector so that it supports 
the postulates of pattern recognition. 

  Approach: Find a linear transformation of the 
pattern so that an optimality criterion is satisfied. 

  Let             be the input signal. The linear 
transformation                maps     to the feature 
vector            , so that            (ideally            ): 

  Problem:  Compute a matrix     , so that the 
resulting features     optimize a quality criterion. 
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Goal of PCA 

  The goal of Principal Component Analysis (PCA) is to 

find a transformation matrix Φ such that the resulting 
features can best describe the variation that is 
observed in the original data. 

  We want to transform the data so that in their new 
representation the data is not all tightly clustered, 
but rather spread across the new M dimensional 
space.  

  We want to maximize the distance between the 
feature vectors. 
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PCA Optimization Criterion 

  We want to maximize the distance between the 
feature vectors. 

  The Euclidean distance between two vectors      and 
is: 

  In PCA we want to derive a linear transformation Φ 
that maximizes this distance over all the pairs of 
points. We want to maximize: 

 where K is the number of data points. 
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PCA Optimization Criterion - continued 

  In PCA we want to maximize: 

  s1() is the total square distance of all features to each 
other. 

  A trivial solution to this maximization problem is one 
that has Φ approaching infinity. 

  Idea: bind the components of  Φ  to be within a 
certain range. 

  

€ 

s1 Φ( ) =
 c i −
 c j( )

T  c i −
 c j( )

j=1

K

∑
i=1

K

∑

= Φ
 
f i −Φ

 
f j( )

T
Φ
 
f i −Φ

 
f j( )

j=1

K

∑
i=1

K

∑



 Seite 7 

Page 7 

Refined PCA Optimization Criterion 

  A simple way for controlling the range of values of the 

components of  Φ  is to try to keep its norm as close to 
unity. 

  So we have a 2nd optimization goal: minimize 
 where       is an approximation of the Frobenius norm of 
the matrix . It is the sum of the squares of the 

elements of Φ. 

  We can combine these two optimization goals into a 
single optimization criterion using a Lagrange multiplier 

λ: 
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Refined PCA Optimization Criterion – cont. 

  Goal of PCA: Find Φ that maximizes 

  The 1st term controls the spread of the feature points. 

  The 2nd term controls the of Φ. 

  In other words, we are looking for a linear 
transformation Φ, among all possible Φs that 
maximizes s1(): 
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Derivation of the PCA Transformation Matrix 

  How do we compute the matrix     that satisfies 
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  Compute the partial derivative with respect to the 

terms      of the transformation matrix Φ. The values 
of      that set the partial derivative to zero are the 
ones that maximize our optimization function. 

  

€ 

 
ϕ i

  

€ 

 
ϕ i

  Since the equation as-is is quite complex, we will 
look at each part individually (distance maximization 
and limiting the norm of the matrix).  
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Maximizing the Spread 

  First, let us simplify the summation by factoring out 
the transformation matrix: 

  Let                     then the previous equation becomes: 
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Continued Derivation 

  The equation                       is in a very convenient 

form because it allows us to use a property of the 

trace of symmetric matrices. 

  For a symmetric matrix M: 

  By construction          is a symmetric matrix. Thus: 

  But                              . Hence:  
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Continued Derivation 2 

  We have shown so far that the square distance of all 
possible feature pairs is: 

 where 

  Let                 

  Since        contains only original signal measurements, 
it is also known as the measurement matrix. 

  We can rewrite the distance over all feature pairs as: 

  

€ 

 c i −
 c j( )

T  c i −
 c j( )

j=1

K

∑
i=1

K

∑ = trace gijgij
TΦTΦ( )

j=1

K

∑
i=1

K

∑

  

€ 

gij =
 
f i −
 
f j( )

€ 

Mij = gijgij
T

€ 

Mij

  

€ 

 c i −
 c j( )

T  c i −
 c j( )

j=1

K

∑
i=1

K

∑ = trace MijΦ
TΦ( )

j=1

K

∑
i=1

K

∑



 Seite 13 

Page 13 

Continued Derivation 3 

  Now recall that                             where the     s       
are column vectors. Then the last equation becomes: 

  

€ 

ΦT =
 
ϕ 1,
 
ϕ 2,…,  ϕ M( )   

€ 

 
ϕ i

  

€ 

trace MijΦ
TΦ( )

j=1

K

∑
i=1

K

∑ = trace Mij
 
ϕ 1,
 
ϕ 2,…,  ϕ M[ ] 

 
ϕ 1
 
ϕ 2

 
ϕ M

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 j=1

K

∑
i=1

K

∑

= trace Mij
 
ϕ k

k=1

M

∑  
ϕ k
T

 

 
 

 

 
 

j=1

K

∑
i=1

K

∑



 Seite 14 

Page 14 

Continued Derivation 4 

  We can reuse the property                              to 
remove the trace from the previous equation: 

  Let                    . Reminder: 

  Then the optimization function can be rewritten as:   
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Continued Derivation 5 

  We can now use the simplified form of the optimization 
function: 

 and examine its partial derivative w.r.t Φ,

  For each individual basis vector       we get: 
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  However, this is a typical eigenvalue, eigenvector 
problem: We have a vector, we apply a transformation 
to it and we get a scalar multiple (i.e an eigenvalue) of 
the same vector. 
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Summary of Derivation 

  Thus, the matrix Φ that maximizes the overall 
spread of the features while having bounded 
elements, i.e. the matrix that satisfies: 

 is the one where the component basis vectors 
satisfy: 

 where 
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PCA Algorithm 

  The matrix Φ that maximizes the spread of features 
is constructed as follows: 

1.  Build Q, the NxN kernel or covariance matrix. 

2.  Compute the eigenvectors of Q via SVD (Q is a 
positive symmetric matrix so it is easily 
diagonalizable). 

3.  The  eigenvectors are sorted according to their 
eigenvalues. 

4.  Use the most significant M eigenvectors. 

5.  The eigenvectors of Q become the rows of Φ.  
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Matrix Diagonalization 

  Given a positive symmetric matrix Q, one can 
compute a matrix V that diagonalizes Q. 

  D is a diagonal matrix that contains the eigenvalues 
of Q (often sorted in descending order). 

  V is a matrix of eigenvectors. Each column of V is an 
eigenvector, whose eigenvalue is in the 
corresponding column in D. 

  There are many methods for diagonalizing a matrix 
(e.g. Jacobi diagonalization) including SVD which for 
real symmetric matrices reduces to diagonalization. 

€ 

V −1QV = D
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Simple PCA Examples 
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Intuition behind PCA 

  The goal of pattern recognition is to reliably identify 
signals that belong to a specific class (e.g. people, cars, 
coffee beans of different qualities, etc.). 

  It makes sense to use a representation that best captures 
what “makes a car a car” and how it differs from people. 

  Thus, given a signal, we look for the attributes which can 
explain the observed covariance/co-dependence in a set of 
variables. 

  For better separability of classes we want: 
  attributes that are uncorrelated 
  show high variance, so that they capture the variety of the 

members within a single class 

  These uncorrelated underlying attributes are called 
factors or principal components. 
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PCA Example: Eigenfaces 

  A very well-known example of the use of PCA in pattern 
recognition is eigenfaces: a face recognition system, 
where faces are represented by their eigenvectors. 



 Seite 22 

Page 22 

Building the Eigenfaces 

1.  Collect a large number of digital images of faces 
taken under the same lighting conditions. 

2.  Normalize the images so that the eyes and mouths 
line up. 

3.  Treat each normalized face image as a signal 
vector    .  

4.  Construct the covariance matrix Q of the distribution 
of all the faces in the database. 

5.  Compute the eigenvectors of Q. 

6.  These eigenvectors are the eigenfaces. 
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What is an Eigenface? 

  Each of the eigenfaces looks like a 
blurred average human face. 

  Each eigenface describes a different 
property that discriminates one 
face from another. 

  Note the absence of any gender-
related attributes. 

  Eigenfaces can be thought of as the standardized face 
ingredients which are derived from the statistical 
analysis of many pictures of human faces. 

  A human face can be considered a combination of 
these standard faces. 
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Face Recognition 

  The eigefaces constitute a basis set of vectors for faces. 

  This means that any human face can be represented as 
a weighted sum of eigenfaces. 

  Once the eigenfaces are constructed, one only needs to 
store the weights (the coefficients) for a particular face. 

  A face can be accurately reconstructed from the 
eigenface coefficients. 

  The coefficients themselves can be used for recognition. 

  The larger the number of eigenfaces, the more accurate 
the face reconstruction. 
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Face Reconstruction 
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  Variations in lighting 
conditions 
  Different lighting conditions for 

enrolment and query.  
  Bright light causing image 

saturation. 

Limitations of Eigenfaces 

  Differences in pose 
  When the face appears in different orientations, the 2D feature 

distances get distorted. 

  Expression 
  When the facial expression changes (smile, surprise, etc.) the 

feature location and shape change.  
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PCA in Imaging 

  PCA has been widely used in general pattern 
recognition problems for many years. 

  However, its application in image processing/
analysis where the entire image  is treated as a 
signal has been avoided.  

  Why? It can lead to huge covariance matrices. 

  Consider a 1024x1024 image: 

  The covariance matrix Q is an NxN matrix, i.e. it has 
about 1 trillion entries. 

  If each entry is 1 Byte, then one needs 1000GB just 
to store Q.  
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Covariance Matrix of Image Data 

  Recall that                                       where           . 

  Let F be a row vector, where each column is  

 where F is an NxK2 matrix. 

  Then we can rewrite Q as: 

  Recall that computing the PCA transformation 
matrix involves solving the eigenproblem: 

  This can now be rewritten as:  
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Covariance Matrix of Image Data – cont. 

  Can we “play around” with                     to make 
somehow the PCA computation more space efficient?  
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  We now have another eigenproblem, but the matrix 
FTF is a K2xK2 matrix (instead of the original NxN 
matrix). 

  Now the matrix we need to diagonalize depends on 
the number of samples and not their dimension. 
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Computing the Correct Eigenvectors 

  However, the eigenproblem that is now being solved is 

  Our goal is to compute       not      .   
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  Let’s multiply to the left with F  this time: 
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  So,          is an eigenvector of the original matrix. 

  Thus, the eigenvectors of FTF can be lifted to the 
eigenvectors of Q=FFT by left multiplication by F. 
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PCA Computation on Images 

1.  Construct a K2xN matrix F that contains all possible 
pairs of differences between the samples. 

2.  Compute the eigenvalues and eigenvectors of FTF 
which is a K2xK2 matrix 

3.  Lift the computed eigenvalues and eigenvectors by 
left multiplying them by F. 
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Other Analytic Feature Extraction Methods 

  Main idea behind analytic methods for feature 
computation is to:  

 Find a linear transformation of the pattern so 
that an optimality criterion is satisfied. 

  In PCA the optimality criterion is to maximize the 
spread of the resulting feature vectors over all the 
samples. 

  Keep in mind that the optimality criteria should 
ultimately lead to good pattern recognition rates. 

  Other reasonable criteria? 



 Seite 33 

Page 33 

Good Feature Distribution 

  For good classification results we often want: 

A.  Feature vectors of the same class to be clustered 
tightly together, to form compact clusters. In other 
words, within the same class we want small intra-
class distance. 

B.  Feature vectors from different classes to be spread 
far apart from each other, to be easily separable. 
In other words, between different classes we want  
large inter-class distance. 
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Intra-class Distance 

  A measure of intra-class distance is: 

 where C is the number of classes and K is the 
number of data points. 

  We want a transformation matrix Φ that minimizes 
s2(). 
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Inter-class Distance 

  A measure of inter-class distance is: 

 where C is the number of classes and K is the 
number of data points. 

  We want a transformation matrix Φ that maximizes 
s3(). 
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Combo of Intra- and Inter-class Distance 

  Ideally we would like to have both minimal intra-class 
and maximal interclass distance. 

  We could combine these two criteria in a single 
minimization function using a Lagrange multiplier. 

  Alternatively, the intra- and inter-class distance can be 
combined using ratios: 

  s5(Φ) is also known as Rayleigh Quotient and used in 
Linear Discriminant Analysis (LDA) 

  The resulting Φ is also known as the Fisher Transform. 
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PCA versus LDA 

f1 

f2 PCA LDA 
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LDA Example: Fisherfaces 

  LDA was also applied on face recognition in order to 
overcome some of the problems of eigenfaces. The 
resulting method is known as fisherfaces. 
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  Let X1, X2,…, Xc be the face classes 
(distinct faces) in the database. 

  For each face class Xi, i = 1,2,…,c there 
are k facial images xj, j=1,2,…,k. 

  Compute the mean image µi of each class 
Xi (i,e, the average face per person): 

  The mean image µ of all the classes in 
the database can be calculated as: 

Computing the Fisherfaces  
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  As a measure of intra-class variation, compute the 
within-class scatter matrix: 

  As a measure of inter-class variation, compute the 
between-class scatter matrix: 

  We find the product of SW
-1 and SB and then 

compute the eigenvectors and eigenvalues of this 
product (SW

-1. SB) 

Computing the Fisherfaces – Scatter Matrix  
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Sample Fisherface 

  All possible combinations of 159+1 were tested. 
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Evaluation of Fisherfaces vs. Eigenfaces 

  At the University of Illinois at Urbana Champaign they 
evaluated fisherfaces against eigenfaces. 

  The face database contained 160 images of 16 people. 

  For each person, there were 10 images: 
  One with and one without glasses 
  Three different lighting conditions 
  Five different facial expressions 

  159 images were used for training, 1 was used for 
testing/evaluation. All possible combinations of 159+1 
were tested. 
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Fisherfaces vs. Eigenfaces 
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Resources 
1.  The 2D PCA example is courtesy of D. James 

http://www.cs.cornell.edu/courses/cs322/2008sp/schedule.html  

2.  The 3D PCA example is from the website of Miner3D http://www.miner3d.com/products/pca.html  

3.  The eigenface material is based on the slides of Z. B. Joseph 
http://www.cs.cmu.edu/~zivbj/class/10701/lecture/lec21.pdf  

4.  The fisherface material is based on the slides of p. Buddharaju 
http://www2.cs.uh.edu/~rmverma/InformationAssurance_Module3/Biometrics_Lecture3/COSC_6397-
Lecture3.ppt  

5.  The comparison between Fisherfaces and Eigenfaces is courtesy of H. Wang 
http://courses.engr.illinois.edu/ece598/ffl/paper_presentations/HongchengWang.pdf  


