
Dr. Elli Angelopoulou
Lehrstuhl für Mustererkennung (Informatik 5)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Analytic Feature Extraction Methods
Principal Component Analysis,
Linear Discriminant Analysis

 Seite 2

Page 2

Pattern Recognition Pipeline

  Heuristic feature extraction methods
  Projection to new orthogonal basis

  Linear Predictive Coding (LPC)

  Geometric Moments

  Wavelets

  Analytic feature extraction methods

  Feature selection

A/D Pre-processing
Feature Extraction
and Selection Classification f’ f h c Ωκ

Learning Training samples

 Seite 3

Page 3

Analytic Methods for Feature Computation

  Idea: Construct a feature vector so that it supports
the postulates of pattern recognition.

  Approach: Find a linear transformation of the
pattern so that an optimality criterion is satisfied.

  Let be the input signal. The linear
transformation maps to the feature
vector , so that (ideally):

  Problem: Compute a matrix , so that the
resulting features optimize a quality criterion.

€

f ∈ RN

€

Φ :

f → c

€

f

€

 c ∈ RM

€

M ≤ N

€

M << N

€

 c =Φ

f

€

Φ

€

 c

 Seite 4

Page 4

Goal of PCA

  The goal of Principal Component Analysis (PCA) is to

find a transformation matrix Φ such that the resulting
features can best describe the variation that is
observed in the original data.

  We want to transform the data so that in their new
representation the data is not all tightly clustered,
but rather spread across the new M dimensional
space.

  We want to maximize the distance between the
feature vectors.

 Seite 5

Page 5

PCA Optimization Criterion

  We want to maximize the distance between the
feature vectors.

  The Euclidean distance between two vectors and
is:

  In PCA we want to derive a linear transformation Φ
that maximizes this distance over all the pairs of
points. We want to maximize:

 where K is the number of data points.

€

 c i

€

 c j

€

 c i −
 c j()

T c i −
 c j()

€

 c i −
 c j()

T c i −
 c j()

j=1

K

∑
i=1

K

∑

 Seite 6

Page 6

PCA Optimization Criterion - continued

  In PCA we want to maximize:

  s1() is the total square distance of all features to each
other.

  A trivial solution to this maximization problem is one
that has Φ approaching infinity.

  Idea: bind the components of Φ to be within a
certain range.

€

s1 Φ() =
 c i −
 c j()

T c i −
 c j()

j=1

K

∑
i=1

K

∑

= Φ

f i −Φ

f j()

T
Φ

f i −Φ

f j()

j=1

K

∑
i=1

K

∑

 Seite 7

Page 7

Refined PCA Optimization Criterion

  A simple way for controlling the range of values of the

components of Φ is to try to keep its norm as close to
unity.

  So we have a 2nd optimization goal: minimize
 where is an approximation of the Frobenius norm of
the matrix . It is the sum of the squares of the

elements of Φ.

  We can combine these two optimization goals into a
single optimization criterion using a Lagrange multiplier

λ:

€

s1 Φ() = Φ

f i −Φ

f j()

T
Φ

f i −Φ

f j()

j=1

K

∑
i=1

K

∑ −λ Φ 2 −1()

€

Φ 2 −1()

€

⋅ 2

 Seite 8

Page 8

Refined PCA Optimization Criterion – cont.

  Goal of PCA: Find Φ that maximizes

  The 1st term controls the spread of the feature points.

  The 2nd term controls the of Φ.

  In other words, we are looking for a linear
transformation Φ, among all possible Φs that
maximizes s1():

€

s1 Φ() = Φ

f i −Φ

f j()

T
Φ

f i −Φ

f j()

j=1

K

∑
i=1

K

∑ −λ Φ 2 −1()

€

ˆ Φ = argmax
Φ

s1 Φ()

 Seite 9

Page 9

Derivation of the PCA Transformation Matrix

  How do we compute the matrix that satisfies

€

ˆ Φ = argmax
Φ

Φ

f i −Φ

f j()

T
Φ

f i −Φ

f j()

j=1

K

∑
i=1

K

∑ −λ Φ 2 −1()
€

ˆ Φ

  Compute the partial derivative with respect to the

terms of the transformation matrix Φ. The values
of that set the partial derivative to zero are the
ones that maximize our optimization function.

€

ϕ i

€

ϕ i

  Since the equation as-is is quite complex, we will
look at each part individually (distance maximization
and limiting the norm of the matrix).

 Seite 10

Page 10

Maximizing the Spread

  First, let us simplify the summation by factoring out
the transformation matrix:

  Let then the previous equation becomes:

€

Φ

f i −Φ

f j()

T
Φ

f i −Φ

f j()

j=1

K

∑
i=1

K

∑

= Φ

f i −

f j()[]

T
Φ

f i −

f j()

j=1

K

∑
i=1

K

∑

=

f i −

f j()

T
ΦTΦ

f i −

f j()

j=1

K

∑
i=1

K

∑

€

gij =

f i −

f j()

€

gij
TΦTΦgij

j=1

K

∑
i=1

K

∑

 Seite 11

Page 11

Continued Derivation

  The equation is in a very convenient

form because it allows us to use a property of the

trace of symmetric matrices.

  For a symmetric matrix M:

  By construction is a symmetric matrix. Thus:

  But . Hence:

€

gij
TΦTΦgij

j=1

K

∑
i=1

K

∑

€

xTMy = trace MxyT()

€

ΦTΦ

€

gij
TΦTΦgij

j=1

K

∑
i=1

K

∑ = trace ΦTΦgijgij
T()

j=1

K

∑
i=1

K

∑

€

trace M() = trace MT()

€

trace ΦTΦgijgij
T()

j=1

K

∑
i=1

K

∑ = trace gijgij
TΦTΦ()

j=1

K

∑
i=1

K

∑

 Seite 12

Page 12

Continued Derivation 2

  We have shown so far that the square distance of all
possible feature pairs is:

 where

  Let

  Since contains only original signal measurements,
it is also known as the measurement matrix.

  We can rewrite the distance over all feature pairs as:

€

 c i −
 c j()

T c i −
 c j()

j=1

K

∑
i=1

K

∑ = trace gijgij
TΦTΦ()

j=1

K

∑
i=1

K

∑

€

gij =

f i −

f j()

€

Mij = gijgij
T

€

Mij

€

 c i −
 c j()

T c i −
 c j()

j=1

K

∑
i=1

K

∑ = trace MijΦ
TΦ()

j=1

K

∑
i=1

K

∑

 Seite 13

Page 13

Continued Derivation 3

  Now recall that where the s
are column vectors. Then the last equation becomes:

€

ΦT =

ϕ 1,

ϕ 2,…, ϕ M()

€

ϕ i

€

trace MijΦ
TΦ()

j=1

K

∑
i=1

K

∑ = trace Mij

ϕ 1,

ϕ 2,…, ϕ M[]

ϕ 1

ϕ 2

ϕ M

 j=1

K

∑
i=1

K

∑

= trace Mij

ϕ k

k=1

M

∑
ϕ k
T

j=1

K

∑
i=1

K

∑

 Seite 14

Page 14

Continued Derivation 4

  We can reuse the property to
remove the trace from the previous equation:

  Let . Reminder:

  Then the optimization function can be rewritten as:

€

xTMy = trace MxyT()

€

trace Mij

ϕ k

k=1

M

∑
ϕ k
T

j=1

K

∑
i=1

K

∑ =

ϕ k
T

k=1

M

∑ Mij

ϕ k

j=1

K

∑
i=1

K

∑

€

Q = Mij
j=1

K

∑
i=1

K

∑

€

Mij =

f i −

f j()

f i −

f j()

T

€

s1 Φ() = Φ

f i −Φ

f j()

T
Φ

f i −Φ

f j()

j=1

K

∑
i=1

K

∑ −λ Φ 2 −1()

=

ϕ k

T

k=1

M

∑ Q ϕ k − λ

ϕ k

T

k=1

M

∑
ϕ k −1

 Seite 15

Page 15

Continued Derivation 5

  We can now use the simplified form of the optimization
function:

 and examine its partial derivative w.r.t Φ,

  For each individual basis vector we get:

€

s1 Φ() =

ϕ k
T

k=1

M

∑ Q ϕ k − λ

ϕ k
T

k=1

M

∑
ϕ k −1

€

∂ s1 Φ()
∂Φ

€

ϕ k

€

∂ s1 Φ()
∂

ϕ k

= 0⇒ 2Q ϕ k − 2λ

ϕ k = 0⇒ Q ϕ k = λ

ϕ k

  However, this is a typical eigenvalue, eigenvector
problem: We have a vector, we apply a transformation
to it and we get a scalar multiple (i.e an eigenvalue) of
the same vector.

 Seite 16

Page 16

Summary of Derivation

  Thus, the matrix Φ that maximizes the overall
spread of the features while having bounded
elements, i.e. the matrix that satisfies:

 is the one where the component basis vectors
satisfy:

 where

€

s1 Φ() = Φ

f i −Φ

f j()

T
Φ

f i −Φ

f j()

j=1

K

∑
i=1

K

∑ −λ Φ 2 −1()

€

Q ϕ k = λ

ϕ k

€

Q =

f i −

f j()

f i −

f j()

T

j=1

K

∑
i=1

K

∑

kernel
matrix
 or

covariance
matrix

 Seite 17

Page 17

PCA Algorithm

  The matrix Φ that maximizes the spread of features
is constructed as follows:

1.  Build Q, the NxN kernel or covariance matrix.

2.  Compute the eigenvectors of Q via SVD (Q is a
positive symmetric matrix so it is easily
diagonalizable).

3.  The eigenvectors are sorted according to their
eigenvalues.

4.  Use the most significant M eigenvectors.

5.  The eigenvectors of Q become the rows of Φ.

 Seite 18

Page 18

Matrix Diagonalization

  Given a positive symmetric matrix Q, one can
compute a matrix V that diagonalizes Q.

  D is a diagonal matrix that contains the eigenvalues
of Q (often sorted in descending order).

  V is a matrix of eigenvectors. Each column of V is an
eigenvector, whose eigenvalue is in the
corresponding column in D.

  There are many methods for diagonalizing a matrix
(e.g. Jacobi diagonalization) including SVD which for
real symmetric matrices reduces to diagonalization.

€

V −1QV = D

 Seite 19

Page 19

Simple PCA Examples

 Seite 20

Page 20

Intuition behind PCA

  The goal of pattern recognition is to reliably identify
signals that belong to a specific class (e.g. people, cars,
coffee beans of different qualities, etc.).

  It makes sense to use a representation that best captures
what “makes a car a car” and how it differs from people.

  Thus, given a signal, we look for the attributes which can
explain the observed covariance/co-dependence in a set of
variables.

  For better separability of classes we want:
  attributes that are uncorrelated
  show high variance, so that they capture the variety of the

members within a single class

  These uncorrelated underlying attributes are called
factors or principal components.

 Seite 21

Page 21

PCA Example: Eigenfaces

  A very well-known example of the use of PCA in pattern
recognition is eigenfaces: a face recognition system,
where faces are represented by their eigenvectors.

 Seite 22

Page 22

Building the Eigenfaces

1.  Collect a large number of digital images of faces
taken under the same lighting conditions.

2.  Normalize the images so that the eyes and mouths
line up.

3.  Treat each normalized face image as a signal
vector .

4.  Construct the covariance matrix Q of the distribution
of all the faces in the database.

5.  Compute the eigenvectors of Q.

6.  These eigenvectors are the eigenfaces.

€

f

 Seite 23

Page 23

What is an Eigenface?

  Each of the eigenfaces looks like a
blurred average human face.

  Each eigenface describes a different
property that discriminates one
face from another.

  Note the absence of any gender-
related attributes.

  Eigenfaces can be thought of as the standardized face
ingredients which are derived from the statistical
analysis of many pictures of human faces.

  A human face can be considered a combination of
these standard faces.

 Seite 24

Page 24

Face Recognition

  The eigefaces constitute a basis set of vectors for faces.

  This means that any human face can be represented as
a weighted sum of eigenfaces.

  Once the eigenfaces are constructed, one only needs to
store the weights (the coefficients) for a particular face.

  A face can be accurately reconstructed from the
eigenface coefficients.

  The coefficients themselves can be used for recognition.

  The larger the number of eigenfaces, the more accurate
the face reconstruction.

 Seite 25

Page 25

Face Reconstruction

 Seite 26

Page 26

  Variations in lighting
conditions
  Different lighting conditions for

enrolment and query.
  Bright light causing image

saturation.

Limitations of Eigenfaces

  Differences in pose
  When the face appears in different orientations, the 2D feature

distances get distorted.

  Expression
  When the facial expression changes (smile, surprise, etc.) the

feature location and shape change.

 Seite 27

Page 27

PCA in Imaging

  PCA has been widely used in general pattern
recognition problems for many years.

  However, its application in image processing/
analysis where the entire image is treated as a
signal has been avoided.

  Why? It can lead to huge covariance matrices.

  Consider a 1024x1024 image:

  The covariance matrix Q is an NxN matrix, i.e. it has
about 1 trillion entries.

  If each entry is 1 Byte, then one needs 1000GB just
to store Q.

€

f ∈ RN , where N = 220

 Seite 28

Page 28

Covariance Matrix of Image Data

  Recall that where .

  Let F be a row vector, where each column is

 where F is an NxK2 matrix.

  Then we can rewrite Q as:

  Recall that computing the PCA transformation
matrix involves solving the eigenproblem:

  This can now be rewritten as:

€

Q =

f i −

f j()

f i −

f j()

T

j=1

K

∑
i=1

K

∑

€

f ∈ RN

€

F =

f 1 −

f 1()

f 1 −

f 2()

f i −

f j()

f i −

f j +1()

f K −

f K−1()

f K −

f K()[]

€

Q = FFT

€

Q ϕ k = λ

ϕ k

€

FFT ϕ k = λ

ϕ k

€

f i −

f j()

 Seite 29

Page 29

Covariance Matrix of Image Data – cont.

  Can we “play around” with to make
somehow the PCA computation more space efficient?

€

FFT ϕ k = λ

ϕ k

  Let’s multiply to the left with FT:

€

FTFFT ϕ k = λFT ϕ k

FTF() FT ϕ k() = λ FT ϕ k()
FTF()

ψ k = λ

ψ k , where

ψ k = FT ϕ k

  We now have another eigenproblem, but the matrix
FTF is a K2xK2 matrix (instead of the original NxN
matrix).

  Now the matrix we need to diagonalize depends on
the number of samples and not their dimension.

 Seite 30

Page 30

Computing the Correct Eigenvectors

  However, the eigenproblem that is now being solved is

  Our goal is to compute not .

€

FTF()

ψ k = λ

ψ k

€

ϕ k

€

F FTF()

ψ k = λF

ψ k

FFT F

ψ k() = λ F

ψ k()

€

ψ k

  Let’s multiply to the left with F this time:

Q

  So, is an eigenvector of the original matrix.

  Thus, the eigenvectors of FTF can be lifted to the
eigenvectors of Q=FFT by left multiplication by F.

€

F

ψ k

 Seite 31

Page 31

PCA Computation on Images

1.  Construct a K2xN matrix F that contains all possible
pairs of differences between the samples.

2.  Compute the eigenvalues and eigenvectors of FTF
which is a K2xK2 matrix

3.  Lift the computed eigenvalues and eigenvectors by
left multiplying them by F.

€

F =

f 1 −

f 1()

f 1 −

f 2()

f i −

f j()

f i −

f j +1()

f K −

f K−1()

f K −

f K()[]

 Seite 32

Page 32

Other Analytic Feature Extraction Methods

  Main idea behind analytic methods for feature
computation is to:

 Find a linear transformation of the pattern so
that an optimality criterion is satisfied.

  In PCA the optimality criterion is to maximize the
spread of the resulting feature vectors over all the
samples.

  Keep in mind that the optimality criteria should
ultimately lead to good pattern recognition rates.

  Other reasonable criteria?

 Seite 33

Page 33

Good Feature Distribution

  For good classification results we often want:

A.  Feature vectors of the same class to be clustered
tightly together, to form compact clusters. In other
words, within the same class we want small intra-
class distance.

B.  Feature vectors from different classes to be spread
far apart from each other, to be easily separable.
In other words, between different classes we want
large inter-class distance.

 Seite 34

Page 34

Intra-class Distance

  A measure of intra-class distance is:

 where C is the number of classes and K is the
number of data points.

  We want a transformation matrix Φ that minimizes
s2().

€

s2 Φ() =
 c i
κ −
 c j
κ()

T c i
κ −
 c j
κ()

j=1

K

∑
i=1

K

∑
κ =1

C

∑

= Φκ

f i −Φ

κ

f j()

T
Φκ

f i −Φ

κ

f j()

j=1

K

∑
i=1

K

∑
κ =1

C

∑

minimize!

 Seite 35

Page 35

Inter-class Distance

  A measure of inter-class distance is:

 where C is the number of classes and K is the
number of data points.

  We want a transformation matrix Φ that maximizes
s3().

€

s3 Φ() =
 c i
κ −
 c j
λ()

T c i
κ −
 c j
λ()

j=1

K

∑
i=1

K

∑
λ=1
λ≠κ

C

∑
κ =1

C

∑

= Φκ

f i −Φ

λ

f j()

T
Φκ

f i −Φ

λ

f j()

j=1

K

∑
i=1

K

∑
λ=1
λ≠κ

C

∑
k=1

C

∑

maximize!

 Seite 36

Page 36

Combo of Intra- and Inter-class Distance

  Ideally we would like to have both minimal intra-class
and maximal interclass distance.

  We could combine these two criteria in a single
minimization function using a Lagrange multiplier.

  Alternatively, the intra- and inter-class distance can be
combined using ratios:

  s5(Φ) is also known as Rayleigh Quotient and used in
Linear Discriminant Analysis (LDA)

  The resulting Φ is also known as the Fisher Transform.

€

s4 Φ() = s2 Φ() − λ s3 Φ()

€

s5 Φ() =
s3 Φ()

s2 Φ()

minimize!

maximize!

 Seite 37

Page 37

PCA versus LDA

f1

f2 PCA LDA

 Seite 38

Page 38

LDA Example: Fisherfaces

  LDA was also applied on face recognition in order to
overcome some of the problems of eigenfaces. The
resulting method is known as fisherfaces.

 Seite 39

Page 39

  Let X1, X2,…, Xc be the face classes
(distinct faces) in the database.

  For each face class Xi, i = 1,2,…,c there
are k facial images xj, j=1,2,…,k.

  Compute the mean image µi of each class
Xi (i,e, the average face per person):

  The mean image µ of all the classes in
the database can be calculated as:

Computing the Fisherfaces

 Seite 40

Page 40

  As a measure of intra-class variation, compute the
within-class scatter matrix:

  As a measure of inter-class variation, compute the
between-class scatter matrix:

  We find the product of SW
-1 and SB and then

compute the eigenvectors and eigenvalues of this
product (SW

-1. SB)

Computing the Fisherfaces – Scatter Matrix

 Seite 41

Page 41

Sample Fisherface

  All possible combinations of 159+1 were tested.

 Seite 42

Page 42

Evaluation of Fisherfaces vs. Eigenfaces

  At the University of Illinois at Urbana Champaign they
evaluated fisherfaces against eigenfaces.

  The face database contained 160 images of 16 people.

  For each person, there were 10 images:
  One with and one without glasses
  Three different lighting conditions
  Five different facial expressions

  159 images were used for training, 1 was used for
testing/evaluation. All possible combinations of 159+1
were tested.

 Seite 43

Page 43

Fisherfaces vs. Eigenfaces

 Seite 44

Page 44

Resources
1.  The 2D PCA example is courtesy of D. James

http://www.cs.cornell.edu/courses/cs322/2008sp/schedule.html

2.  The 3D PCA example is from the website of Miner3D http://www.miner3d.com/products/pca.html

3.  The eigenface material is based on the slides of Z. B. Joseph
http://www.cs.cmu.edu/~zivbj/class/10701/lecture/lec21.pdf

4.  The fisherface material is based on the slides of p. Buddharaju
http://www2.cs.uh.edu/~rmverma/InformationAssurance_Module3/Biometrics_Lecture3/COSC_6397-
Lecture3.ppt

5.  The comparison between Fisherfaces and Eigenfaces is courtesy of H. Wang
http://courses.engr.illinois.edu/ece598/ffl/paper_presentations/HongchengWang.pdf

