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Abstract— As decisions in cardiology increasingly rely on
non-invasive methods, fast and precise image processing tools
have become a crucial component of the analysis workflow.
To the best of our knowledge, we propose the first automatic
system for patient-specific modeling and quantification of the left
heart valves, which operates on cardiac computed tomography
(CT) and transesophageal echocardiogram (TEE) data. Robust
algorithms, based on recent advances in discriminative learning,
are used to estimate patient-specific parameters from sequences
of volumes covering an entire cardiac cycle. A novel physiological
model of the aortic and mitral valves is introduced, which
captures complex morphologic, dynamic and pathologic varia-
tions. This holistic representation is hierarchically defined on
three abstraction levels: global location and rigid motion model,
non-rigid landmark motion model and comprehensive aortic-
mitral model. First we compute the rough location and cardiac
motion applying marginal space learning. The rapid and complex
motion of the valves, represented by anatomical landmarks, is
estimated using a novel trajectory spectrum learning algorithm.
The obtained landmark model guides the fitting of the full phys-
iological valve model, which is locally refined through learned
boundary detectors. Measurements efficiently computed from the
aortic-mitral representation support an effective morphological
and functional clinical evaluation. Extensive experiments on a
heterogeneous data set, cumulated to 1516 TEE volumes from
65 4D TEE sequences and 690 cardiac CT volumes from 69
4D CT sequences, demonstrated a speed of 4.8 seconds per
volume and average accuracy of 1.45mm with respect to expert
defined ground-truth. Additional clinical validations prove the
quantification precision to be in the range of inter-user variability.
To the best of our knowledge this is the first time a patient-specific
model of the aortic and mitral valves is automatically estimated
from volumetric sequences.

Index Terms— Heart Valve Modeling, Heart Valve Quantifica-
tion, Trajectory Spectrum Learning, Non-Rigid Motion Estima-
tion, Patient-Specific Modeling

I. INTRODUCTION

Valvular surgery accounts for up to 20% of all cardiac pro-
cedures in the United States and is applied in nearly 100,000

patients every year. Yet, with an average cost of $120,000
and 5.6% in hospital death rate, valve operations are the most
expensive and riskiest cardiac interventions [1]. Aortic and
mitral valves are most commonly affected, cumulating in 64%
and 15%, respectively of all valvular heart disease (VHD)
cases [2].

The heart valves play a key role in the cardiovascular system
as they regulate the blood flow inside the heart chambers
and human body. In particular, the aortic and mitral valves
execute synchronized rapid opening and closing movements to
govern the fluid interaction in-between the left atrium (LA),
left ventricle (LV) and aorta (Ao). Their complex morpholog-
ical, functional and hemodynamical interdependency has been
recently underlined [3], [4].

Congenital, degenerative, structural, infective or inflamma-
tory diseases can provoke dysfunctions, resulting in stenotic
and regurgitant valves [5]. The blood flow is obstructed or, in
case of regurgitant valves, blood leaks due to improper closing.
Both conditions can greatly interfere with the pumping func-
tion of the heart, causing life-threatening conditions. Severe
cases require valve surgery, while mild to moderate cases need
accurate diagnosis and long-term medical management.

Precise morphological and functional knowledge about the
aortic-mitral apparatus is a prerequisite during the entire clin-
ical workflow including diagnosis, therapy-planning, surgery
or percutaneous intervention as well as patient monitoring and
follow-up. To date, most non-invasive investigations are based
on two-dimensional images, user-dependent processing and
manually performed, potentially inaccurate measurements [2].
Imaging modalities, such as Cardiac Computed Tomography
(CT) and Transesophageal Echocardiography (TEE), enable
for dynamic four dimensional scans of the beating heart over
the whole cardiac cycle. Such volumetric time-resolved data
encodes comprehensive structural and dynamic information,
which however is barely exploited in clinical practice, due
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Fig. 1. (a) Physiological model of the aortic-mitral coupling, (b) Patient-specific model fitted to CT (top) and TEE (bottom) data, (c) example of model-driven
quantification - volumes of the aortic valve sinuses over the cardiac cycle.

to its size and complexity as well as the lack of appropriate
medical systems.

In this paper, we propose a novel system for patient-specific
modeling and clinical assessment of the aortic and mitral
valves. The robust conversion of four dimensional CT or
TEE data into relevant morphological and functional quanti-
ties comprises three aspects: physiological modeling, patient-
specific model estimation and model-driven quantification (see
Fig. 1). The aortic-mitral coupling is represented through a
mathematical model sufficiently descriptive and flexible to
capture complex morphological, dynamic and pathological
variation. It includes all major anatomic landmarks and struc-
tures and likewise it is hierarchically designed to facilitate au-
tomatic estimation of its parameters. Robust machine-learning
algorithms process the four-dimensional data coming from the
medical scanners and estimate patient-specific models of the
valves. As a result, a wide-ranging automatic analysis can be
performed to measure relevant morphological and functional
aspects of the subject valves. In that context, our major
contributions include:

• A comprehensive physiologically-driven model of the
aortic and mitral valves to capture the full morphology
and dynamics as well as pathologic variations.

• A robust and efficient method to automatically estimate
valve model parameters from four-dimensional CT or
TEE data. It includes a novel trajectory spectrum learning
algorithm for localization and motion estimation of non-
rigid objects.

• A model-driven and automatic analysis method, that
supports for morphological quantification and mea-
surement of dynamic variations over the entire cardiac
cycle.

• Simultaneous analysis of the aortic-mitral complex
for concomitant clinical management and in-depth un-
derstanding of the reciprocal functional influences.

Part of this work has been reported in our conference publi-
cations [6]–[8]. In this paper, the joint valve model includes a
physiologically-driven parameterization to represent the full

morphology and dynamics of the aortic-mitral apparatus.
It also introduces a complete framework for patient-specific
parameter estimation from CT and TEE data. Moreover, a
model-based valve quantification methodology is presented
along with extensive clinical experiments. The remainder of
this paper is organized as follows: Sec. II offers an overview of
previous work on modeling and detection of cardiac structures.
The new physiological model of the aortic and mitral valves
is presented in Sec III. In Sec. IV we introduce a robust algo-
rithm for patient-specific modeling, which includes trajectory
spectrum learning and local-spatio-temporal features. Model-
driven valve quantification is presented in Sec. V. Experiments
and clinical applications are discussed in Sec. VI. This paper
concludes with Sec. VII.

II. RELATED WORK

This section presents the related work on heart valves
and cardiac models as well as object detection and motion
estimation applied to organs.

A. Cardiac and Valve Modeling

The majority of cardiac models to date are focusing on the
representation of the left (LV) and the right ventricle (RV).
More comprehensive models include also the left (LA) and
right atrium (RA) [9], ventricular outflow tracts (LVOT and
RVOT) [10], or the aorta (Ao) and pulmonary trunk (PA) [11].
Nevertheless, none of the mentioned references provides an
explicit model of the aortic or mitral valve. Existent valve
models presented in the literature are mostly generic and
used for hemodynamic studies or analysis of various pros-
theses [12]–[16]. In [17], a model of the mitral valve used for
manual segmentation of TEE data is presented. As it includes
only the mitral valve annulus and closure line during systole,
it is both static and simple. A representation of the aortic-
mitral coupling was recently proposed in [18]. This model is
dynamic but limited to only a curvilinear representation of the
aortic and mitral annuli. Due to the narrow level of detail and
insufficient parameterization, none of the existent valve models
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are applicable for comprehensive patient-specific modeling or
clinical assessment.

B. Estimation of Patient-Specific Dynamic Models

The model estimation determines patient-specific param-
eters from unseen volumetric sequences. Considering the
anatomical and functional complexity of the heart valves, the
estimation procedure can be divided into two tasks: object
delineation and motion estimation.

Related approaches based on active shape models
(ASM) [19], active appearance models (AAM) [20] or de-
formable models [21], [22] are generally applied for object
delineation and segmentation [23], [24]. Often these methods
involve semi-automatic inference or require manual initial-
ization for object location. Recently, discriminative learning
methods have been proved to efficiently solve localization
problems by classifying image regions as containing a target
object. In [10], the learning based approach is applied to three-
dimensional object localization by introducing an efficient
search method referred to as marginal space learning (MSL).
To handle the large number of possible pose parameters of a
3D object, an exhaustive search of hypotheses is performed in
sub-spaces with gradually increased dimensionality.

Instead of extending discriminative learning algorithms for
time dependent four-dimensional problems, to date, motion
estimation is approached by tracking methods. To improve
robustness, many tracking algorithms integrate key frame
detection [25]. The loose coupling between detector and
tracker often outputs temporally inconsistent results. For a
more effective search, strong dynamic [26] models or sophisti-
cated statistical methods are incorporated in motion estimation
algorithms [27].

Trajectory-based features have also increasingly attracted
attention in motion analysis and recognition [28]. It has been
shown that the inherent representative power of both shape and
trajectory projections of non-rigid motion are equal, but the
representation in the trajectory space can significantly reduce
the number of parameters to be optimized [29]. This duality
has been exploited in motion reconstruction and segmenta-
tion [30], structure from motion [29]. In particular, for periodic
motion, frequency domain analysis shows promising results
in motion estimation and recognition [31], [32]. Although
the compact parameterization and duality property are crucial
in the context of learning-based object detection and motion
estimation, this synergy has not been fully exploited yet.

III. AORTIC-MITRAL PHYSIOLOGICAL MODELING

In this section we introduce our physiological model of
the aortic and mitral valves, designed to capture complex
morphological, dynamical and pathological variations. Its hi-
erarchical definition is constructed on three abstraction levels:
global location and rigid motion model, non-rigid landmark
motion model, and comprehensive aortic-mitral model. Along
with the parameterization, we introduce an anatomically driven
resampling method, to establish point correspondence required
for the construction of a statistical shape model.

(a) (b)

Fig. 2. Bounding boxes for aortic and mitral valves encoding their individual
translation (cx, cy , cz), rotation ( ~αx, ~αy , ~αz) and scale (sx, sy , sz). (a)
Apical three chamber view, (b) aortic and mitral valves seen from the aorta
and left atrium respectively, toward the LV. The green letters L,R,N and
A,P indicate the L/R/N - aortic leaflets and anterior/posterior mitral leaflets,
respectively.

A. Global Location and Rigid Motion Model

The global location of both aortic and mitral valves is
parameterized through the similarity transformation in the
three-dimensional space, illustrated as a bounding box in
Fig. 2. A time variable t is augmenting the representation to
capture the temporal variation during the cardiac cycle.

θ = {(cx, cy, cz), (~αx, ~αy, ~αz), (sx, sy, sz), t} (1)

where (cx, cy, cz), (~αx, ~αy, ~αz), (sx, sy, sz) are the position,
orientation and scale parameters (Fig. 2). The remainder of the
section describes the anatomically-driven definition of each
parameter in θ for both valves. Please note that the rigid
motion is modeled independently for the aortic and mitral
valves.

The aortic valve connects the left ventricular outflow tract
to the ascending aorta and includes the aortic root and three
leaflets/cusps (left (L) aortic leaflet, right (R) aortic leaflet and
none (N) aortic leaflet). The root extends from the basal ring
to the sinotubular junction and builds the supporting structure
for the leaflets. These are fixed to the root on a crown-like
attachment and can be thought of as semi-lunar pockets. The
position parameter (cx, cy, cz)aortic is given by the valve’s
barycenter, while the corresponding scale (sx, sy, sz)aortic
is chosen to comprise the entire underlying anatomy. The
long axis ~αz is defined by the normal vectors to the aortic
commissural plane, which is the main axis of the aortic root.
The short axis ~αx is given by the normalized vector pointing
from the barycenter (cx, cy, cz)aortic to the interconnection
point of the left and right leaflet, the left/right-commissure
point. The ~αy direction is constructed from the cross-product
of ~αx and ~αz .

Located in between the left atrium and the left ventricle,
the mitral valve includes the posterior leaflet, anterior leaflet,
annulus and subvalvular apparatus. The latter consists of the
chordae tendiae and papillary muscles, which are not explicitly
treated in this work. Hence, we compute the barycentric posi-
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tion (cx, cy, cz)mitral and scale parameters (sx, sy, sz)mitral
from the mitral leaflets. ~αz is described by the normal vector
to the mitral annulus, while ~αx points from the barycenter
(cx, cy, cz)mitral toward the postero-annular midpoint.

In practice, the ground truth of the global location
and rigid motion model is described by the anatomical
landmarks. Landmarks and their relation to the global
location and rigid motion are defined in the next section
III-B.

B. Non-rigid Landmark Motion Model

The aortic and mitral valves execute a rapid opening-
closing movement, which follows a complex and synchronized
motion pattern. Normalized by the time-dependent similarity
transformation introduced in Sec. III-A, the non-rigid motion
is represented through a model consisting of 18 anatomically-
defined landmarks (see Fig. 3). Three aortic commissure
points, LR-Comm, NL-Comm and RN-Comm, describe the
interconnection locations of the aortic leaflets, while three
hinges, L-Hinge, R-Hinge, and N-Hinge, are their lowest
attachment points to the root. For each leaflet of the aortic
and mitral valves, the center of the corresponding free-edge
is marked by the leaflet tip point: L/R/N-Tip tips for aortic
valves and Ant/Post-Tip (anterior/posterior) leaflet tips for
mitral valves. The two interconnection points of the mitral
leaflets at their free edges are defined by the mitral Ant/Post-
Comm, while the mitral annulus is fixed by the L/R-Trigone
and posteroannular midpoint (PostAnn MidPoint). Finally, the
interface between the aorta and coronary arteries is symbolized
using the L/R-Ostium, the two coronary ostia. Besides the well
defined anatomical meaning, the chosen landmarks serve
as anchor points for qualitative and quantitative clinical
assessment, are robustly identifiable by doctors and possess
a particular visual pattern.

Given the previous description, the motion of each anatom-
ical landmark j can be parameterized by its corresponding
trajectory ~aj over a full cardiac cycle. For a given volume
sequence I(t), one trajectory ~aj is composed by the concate-
nation of the spatial coordinates:

~aj = [~aj(0), ~aj(1), · · · , ~aj(t), · · · , ~aj(n− 1)] (2)

where ~aj are spatial coordinates with ~aj(t) ∈ R3 and t an
equidistant discrete time variable t = 0, · · · , n− 1.

The anatomical landmarks are also used to describe the
global location and rigid motion, defined in Sec. III-A,
as follows: (cx, cy, cz)aortic equals to the gravity center
of the aortic landmarks, except aortic leaflet tips. ~αz is
the normal vector to the LR-Comm, NL-Comm, RN-Comm
plane, ~αx is the unit vector orthogonal to ~αz which points
from (cx, cy, cz)aortic to LR-Comm, ~αy is the cross-product
of ~αx and ~αz . (sx, sy, sz)aortic is given by the maximal
distance between the center (cx, cy, cz)aortic and the aortic
landmarks, along each axes (~αx, ~αy, ~αz). Analogously to
the aortic valve, the barycentric position (cx, cy, cz)mitral is
computed from the mitral landmarks, except mitral leaflet
tips. ~αz is the normal vector to the L/R-Trigone, PostAnn
MidPoint plane, ~αx is orthogonal to ~αz and points from

(a)

(b)

(c)

Fig. 3. Anatomical landmarks of the aorto-mitral complex: (a) aortic
and (b) mitral landmarks in short and long axis views, and (c) complete
landmark model (See Fig. 4 for a illustration of the landmarks relation to the
comprehensive aortic-mitral model).

(cx, cy, cz)mitral towards the PostAnn MidPoint. The scale
parameters (sx, sy, sz)mitral are defined as for the aortic
valve, to comprise the entire mitral anatomy.

C. Comprehensive Aortic-Mitral Model

The full geometry of the valves is modeled using surface
meshes constructed along rectangular grids of vertices. For
each anatomic structure a, the underlying grid is spanned
along two physiologically aligned parametric directions, ~u
and ~v. Each vertex ~vai ∈ R3 has four neighbors, except
the edge and corner points with three and two neighbors,
respectively. Therefore, a rectangular grid with n × m
vertices is represented by (n − 1) × (m − 1) × 2 triangular
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(a) (b)

(c) (d)

(e)

(f)

Fig. 4. Isolated surface components with parametric directions and spatial relations to anatomical landmarks: (a) aortic root and (b) leaflets, mitral (c) anterior
and (d) posterior leaflet. Components all together in two different cardiac phases with (e) aortic valve and opened mitral valve closed and (f) vice versa.
Aortic L-, R- and N-leaflets displayed in green, cyan and red color respectively.

faces. The model M at a particular time step t is uniquely
defined by vertex collections of the anatomic structures. The
time parameter t extends the representation to capture valve
dynamics:

M = [
{
~va1
0 , · · · , ~va1

N1

}
︸ ︷︷ ︸

first anatomy

, · · · ,
{
~van0 , · · · , ~vanNn

}
︸ ︷︷ ︸

n-th anatomy

, t] (3)

where n = 6 is the number of represented anatomies and
N1 . . . Nn are the numbers of vertices for a particular anatomy.
The six represented structures are the aortic root, the three
aortic leaflets and the two mitral leaflets, which are depicted
in Fig. 4 together with their spatial relations to the anatomical
landmarks.

The aortic root connects the ascending aorta to the left
ventricle outflow tract and is represented through a tubular
grid (Fig. 4(a)). This is aligned with the aortic circumferential
u and ascending directions v and includes 36 × 20 vertices
and 1368 faces. The root is constrained by six anatomical
landmarks, i.e., three commissures and three hinges, with a
fixed correspondence on the grid. The three aortic leaflets,
the L-, R- and N-leaflet, are modeled as paraboloids on a
grid of 11 × 7 vertices and 120 faces (Fig. 4(b)). They
are stitched to the root on a crown like attachment ring,
which defines the parametric u direction at the borders. The
vertex correspondence between the root and leaflets along the

merging curve is symmetric and kept fixed. The leaflets are
constrained by the corresponding hinges, commissures and tip
landmarks, where the v direction is the ascending vector from
the hinge to the tip.

The mitral leaflets separate the LA and LV hemodynami-
cally and are connected to the endocardial wall by the saddle
shaped mitral annulus. Both are modeled as paraboloids and
their upper margins define the annulus implicitly. Their grids
are aligned with the circumferential annulus direction u and
the orthogonal direction v pointing from the annulus toward
leaflet tips and commissures (Fig. 4(c) and 4(d)). The anterior
leaflet is constructed from 18×9 vertices and 272 faces while
the posterior leaflet is represented with 24 × 9 vertices and
368 faces. Both leaflets are fixed by the mitral commissures
and their corresponding leaflet tips. The left / right trigones
and the postero-annular midpoint further confine the anterior
and posterior leaflets, respectively.

D. Maintaining Spatial and Temporal Consistency

Point correspondence between the models from different
cardiac phases and across patients is required for building a
statistical shape model (applied in Sec. IV-C). It is difficult to
obtain and maintain a consistent parameterization as presented
in Sec. III-C in complex three-dimensional surfaces. However,
cutting planes can be applied to intersect surfaces (Fig. 5(b),
5(c) and 5(d)) and generate two-dimensional contours (Fig.
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(a) (b) (c) (d) (e)

Fig. 5. (a) Example of a two-dimensional contour and corresponding uniform samples, obtained from the intersection of a plane with the three-dimensional
aortic root. Resampling planes for the mitral leaflets (b,c) and aortic root (d). The planes at the hinge and commissure levels of the aortic root in (d) are
depicted in red and green respectively. Note that for the purpose of clarity only a subset of resampling planes is visualized in figs (b),(c) and (d). (e) Leaflet
closure line correction.

5(a)), which can be uniformly resampled using simple meth-
ods. Hence, by defining a set of physiological-based cutting
planes for each model component, surfaces are consistently
resampled to establish the desired point correspondence.

As mentioned in Sec. III-C the mitral annulus is a saddle
shaped curve and likewise the free edges are non-planar too.
Thus a rotation axis based resampling method is applied for
both mitral leaflets (Fig. 5(b) and 5(c)). The intersection planes
pass through the annular midpoints of the opposite leaflet.
They are rotated around the normal of the plane spanned by
the commissures and the respectively used annular midpoint.

For the aortic root (Fig. 5(d)) a pseudo parallel slice based
method is used. Cutting planes are equidistantly distributed
along the centerline following the v direction. To account
for the bending of the aortic root, especially between the
commissure and hinge level, at each location the plane normal
is aligned with the centerline’s tangent. For the aortic leaflets,
resampling of the iso-curves along their u and v directions is
found to be sufficient.

The anatomical constraints prevent leaflet intersection,
during valve closure, when leaflets are touching each other
to form the leaflet-coaptation area. Potential numerical
errors, which can accumulate at a small scale causing
leaflet intersection along the closure line, can be efficiently
handled using a simple post-processing. Given the point
correspondence preserved by the model, averaging adjacent
points within the intersection area restores model consistency
and ensure high quality visualization as illustrated in Fig.
5(e).

IV. PATIENT-SPECIFIC AORTIC-MITRAL MODEL
ESTIMATION

The model parameters introduced in Sec. III are esti-
mated from volumetric sequences (3D+time data), to construct
patient-specific aortic-mitral representations. We introduce a
robust learning-based algorithm, which in concordance with
the hierarchical parameterization includes three stages: global
location and rigid motion estimation, non-rigid landmark mo-
tion estimation and comprehensive aortic-mitral estimation.
Fig. 6 illustrates the entire algorithm, which relies on novel
techniques such as the trajectory spectrum learning (TSL) with
local-spatio-temporal (LST) features [6] and extends recent
machine learning methods [10], [33]. Please note that in
practice, the same framework is used for the two imaging
modalities without any modification in the algorithms, but

detectors that estimate the probabilities of model parameters
are learned separately for CT and TEE data.

A. Global Location and Rigid Motion Estimation

The location and motion parameters θ, defined in Sec. III-
A, are estimated using the Marginal Space Learning (MSL)
framework [10] in combination with Random Sample Con-
sensus (RANSAC) [34]. Given a sequence of volumes I , the
task is to find similarity parameters θ with maximum posterior
probability:

arg maxθ p(θ|I) = arg maxθ
p(θ(0), · · · , θ(n− 1)|I(0), · · · , I(n− 1)) (4)

To solve equation 4, we formulate the object localization
as a classification problem and estimate θ(t) for each time
step t independently, from the corresponding volumes I(t).
The probability p(θ(t)|I(t)) is modeled by a learned detector
D, which evaluates and scores a large number of hypotheses
for θ(t). D is trained using the Probabilistic Boosting Tree
(PBT) [33], positive and negative samples extracted from the
ground-truth, as well as efficient 3D Haar wavelet [35] and
steerable features [10].

The object localization task is performed by scanning the
trained detector D exhaustively over all hypotheses to find
the most plausible values for θ(t) at each time step t. As
the number of hypotheses to be tested increases exponentially
with the dimensionality of the search space, a sequential
scan in a nine-dimensional, similarity transform, space is
computationally unfeasible. Suppose each dimension in θ(t)
is discretized to n values, the total number of hypotheses is
n9 and even for a small n = 15 becomes extreme 3.98e+10.
To overcome this limitation, we apply the MSL framework,
which breaks the original parameters space Σ into subsets of
increasing marginal spaces:

Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σn = Σ

By decomposing the original search space as follows (please
refer to Sec. III-A for a complete descriptions of the
parameters)

Σ1 = (cx, cy, cz)
Σ2 = (cx, cy, cz, ~αx, ~αy, ~αz)
Σ3 = (cx, cy, cz, ~αx, ~αy, ~αz, sx, sy, sz)
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Fig. 6. Diagram depicting the hierarchical model estimation algorithm. Each block describes the actual estimation stage, computed model parameters and
underlying approach.

the target posterior probability can be expressed as:

p(θ(t)|I(t)) = p(cx, cy, cz|I(t))
p(~αx, ~αy, ~αz|cx, cy, cz, I(t))
p(sx, sy, sz|~αx, ~αy, ~αz, cx, cy, cz, I(t))

In practice, the optimal arrangement for MSL sorts the
marginal spaces in a descending order based on their
variance. Learning parameters with low variance first will
decrease the overall precision of the detection. In our case,
due to CT and TEE acquisition protocols and physiological
variations of the heart, the highest variance comes from
translation followed by orientation and scale. This order is
confirmed by our experiments to output the best results.

Instead of using a single detector D, we train detectors for
each marginal space (D1, D2 and D3) and detect by gradually
increasing dimensionality. After each stage only a limited
number of high-probability candidates are kept to significantly
reduce the search space. Experimentally determined as in
[10], 100 highest score candidates are retained in Σ1, 50 in
Σ2 and 25 in Σ3, such that the smallest subgroup which is
likely to include the optimal solution is preserved.

The candidates with the highest score,[
θ0(0) . . . θ25(0)

]
. . .
[
θ0(n− 1) . . . θ25(n− 1)

]
, estimated at

each time step t, t = 0, . . . n − 1 are aggregated to obtain
a temporal consistent global location and motion θ(t) by
employing a RANSAC estimator. From randomly sampled
candidates, the one yielding the maximum number of
inliers is picked as the final motion. Inliers are considered
within a distance of σ = 7mm from the current candidate
and extracted at each time step t. The distance measure
d(θ(t)1, θ(t)2) is given by the maximum L1 norm of
the standard unit axis deformed by the parameters θ(t)1
and θ(t)2, respectively. The resulting time-coherent θ(t)
describes the global location and rigid motion over the
entire cardiac cycle.

B. Non-rigid Landmark Motion Estimation

Based on the determined global location and rigid motion, in
this section we introduce a novel trajectory spectrum learning
algorithm to estimate the non-linear valve movements from
volumetric sequences. Considering the representation in sec-
tion III-B equation 2, the objective is to find for each landmark
j its trajectory ~aj , with the maximum posterior probability
from a series of volumes I , given the rigid motion θ:

arg max ~aj p(
~aj |I, θ) = arg max ~aj p(

~aj(0), · · · , ~aj(n− 1)|
I(0), · · · , I(n− 1), θ(0), · · · , θ(n− 1))

(5)
Note that Equ. 5 only models the non-rigid landmark motion,
as the global location and motion is removed from the
trajectories by aligning ~aj , j = 0 . . . 10 with the aortic and
~aj , j = 11 . . . 17 with the mitral similarity parameters θ
estimated as described in Sec. IV-A. While it is difficult to
solve equation 5 directly, various assumptions, such as the
Markovian property of the motion [36], have been proposed
to the posterior distribution over ~aj(t) given images up to
time t. However, results are often not guaranteed to be
smooth and may diverge over time, due to error accumulation.
These fundamental issues can be addressed effectively if both,
temporal and spatial appearance information, is considered
over the whole sequence at once.

The trajectory representation ~aj introduced in equation 2
can be uniquely represented by the concatenation of its discrete
Fourier transform (DFT) coefficients,

~sj = [~sj(0), ~sj(1), · · · , ~sj(n− 1)] (6)

obtained through the DFT equation:

~sj(f) =
n−1∑
t=0

~aj(t)e
−j2πtf

n

where ~sj(f) ∈ C3 is the frequency spectrum of the x, y, and
z components of the trajectory ~aj(t), and f = 0, 1, · · · , n− 1
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Fig. 7. Example trajectories of aortic leaflet tips. (a) the aligned trajectories
in the Cartesian space by removing the global similarity transformations.
(b) corresponding 3 trajectories highlighted in red, magenta and green,
which demonstrates the compact spectrum representation. (c) Reconstructed
trajectories of using 64, 10, and 3 components, respectively, showing that
a small number of components can be used to reconstruct faithful motion
trajectories. The vertical axis represents the normalized motion magnitude
with respect to the reference bounding box as illustrated in Fig. 2.

(see Fig. 7). A trajectory ~aj can be exactly reconstructed from
the spectral coefficients ~sj applying the inverse DFT:

~aj(t) =
n−1∑
f=0

~sj(f)e
j2πtf
n (7)

The estimated trajectory is obtained using the magnitude
of the inverse DFT. From the DFT parameterization the
equation 5 can be reformulated as finding the DFT spectrum
~sj , with maximal posterior probability:

arg max~sj p(
~sj |I, θ) = arg max~sj p(

~sj(0), · · · , ~sj(n− 1)|
I(0), · · · , I(n− 1), θ(0), · · · , θ(n− 1))

(8)
Instead of estimating the motion trajectory directly, we

apply discriminative learning to detect the spectrum ~sj in the
frequency domain by optimizing equation 8. The proposed
formulation benefits from three qualities:
• the DFT decomposes the trajectory space in orthogonal

subspaces, which enables the estimation of each compo-
nent ~sj(f) separately.

Fig. 9. An example of a local-spatio-temporal feature, align with a certain
position, orientation and scale, at time t. The temporal context length of the
illustrated LST feature is T, spanned symmetrical relative to t.

• the DFT spectrum representation is compact, especially
for periodic motion allowing for efficient learning and
optimization.

• the posterior distribution is clustered in small regions
facilitating marginalization and pruning of the higher
dimensional parameter spaces.

Inspired by the MSL reviewed in Section IV-A, we efficiently
perform trajectory spectrum learning and detection in DFT
subspaces with gradually increased dimensionality. The intu-
ition is to perform a spectral coarse-to-fine motion estimation,
where the detection of coarse level motion (low frequency) is
incrementally refined with high frequency components repre-
senting fine deformations. Section IV-B.1 presents our novel
Local-Spatio-Temporal (LST) features to incorporate both the
spatial and temporal context. The space marginalization and
training procedure of our trajectory estimator is introduced in
Section IV-B.2. Section IV-B.3 illustrates the application of
the learned detector for motion estimation from unseen data.
The trajectory spectrum learning algorithm is summarized in
Fig. 8.

1) Local-Spatio-Temporal Features: It has been shown that
local orientation and scaling of image features reduce ambigu-
ity and significantly improves learning performance [37]. We
extend the image representation by aligning contextual spatial
features in time, to capture four-dimensional information and
support motion learning from noisy data. The 4D location of
the proposed F 4D() features is parameterized by the similarity
parameters θ, defined in Sec. III-A and estimated in IV-A:

F 4D(θ(t), T |I, s) =
τ(F 3D(I, θ(t+ i ∗ s)), i = −T, · · · , T ) (9)

Three-dimensional F 3D() features extract simple gradient
and intensity information from steerable pattern spatially align
with θ(t) (see [10] for the exact definition). Please note
that according to the anatomical structure, the similarity
parameters θ are defined separately for the aortic and
mitral valves (see Sec. III-B). Knowing that motion is locally
coherent in time, F 3D() is applied in a temporal neighborhood
t − T to t + T at discrete locations evenly distributed with
respect to the current time t (see Fig. 9). The final value
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Fig. 8. Diagram depicting the estimation of non-rigid landmark motion using trajectory spectrum learning.

of a Local-Spatial-Temporal (LST) feature is the result of
time integration using a set of linear kernels τ , which weight
spatial features F 3D() according to their distance from the
current frame t. A simple example for τ , also used in our
implementation, is the uniform kernel over the interval
[−T, T ], τ = 1/(2T + 1)

∑T
i=−T (F 3D(I, θ(t + i ∗ s)). For

this choice of τ , each F 3D contributes equally to the F 4D.
The parameter T steers the size of the temporal context,

while s is a time normalization factor derived from the training
set and the number of time steps of the volume sequence I .
Values for T can be selected by the probabilistic boosting
tree (PBT) [33] in the training stage. Since the time window
size has an inverse relationship with the motion locality, the
introduced 4D local features are in consensus with a coarse-
to-fine search. Our experimental results support this property
by showing that the features with larger T values are selected
to capture the lower frequency motion, and the value of T
decreases for higher frequency motion components.

2) Learning in Marginal Trajectory Spaces: As described
earlier, the motion trajectory is parameterized by the DFT
spectrum components ~sj(f), f = 0, . . . , n − 1. Fig. 7 clearly
shows that the variation of the spectrum components decreases
substantially as the frequency increases. Consequently, trajec-
tories can be adequately approximated by a few dominant
components:

ζ ⊆ {0, . . . , n− 1}, |ζ| << n

identified during training. The obtained compact search space
can be divided in a set of subspaces. We differentiate between
two types of subspaces, individual component subspaces Σ(k)

and marginalized subspaces Σk defined as:

Σ(k) = {~s(k)} (10)
Σk = Σk−1 × Σ(k) (11)
Σ0 ⊂ Σ1 ⊂ . . . ⊂ Σr−1, r = |ζ| (12)

The subspaces Σ(k) are efficiently represented by a set of
corresponding hypotheses H(k) obtained from the training
set. The pruned search space enables efficient learning and
optimization:

Σr−1 = H(0) ×H(1) × . . .×H(r−1), r = |ζ|

The training algorithm starts by learning the posterior prob-
ability distribution in the DC marginal space Σ0. Subsequently,
the learned detectors D0 is applied to identify high probable
candidates C0 from the hypotheses H(0). In the following step,
the dimensionality of the space is increased by adding the next
spectrum component (in this case the fundamental frequency,
Σ(1)). Learning is performed in the restricted space defined
by the extracted high probability regions and hypotheses set
C0 ×H(1) . The same operation is repeated until reaching the
genuine search space Σr−1.

For each marginal space Σk, corresponding discriminative
classifiers Dk are trained on sets of positives Posk and
negatives Negk. We analyze samples constructed from high
probability candidates Ck−1 and hypotheses H(k). The sam-
ple set Ck−1 × H(k) is separated into positive and negative
examples by comparing the corresponding trajectories to the
ground truth in the spatial domain using the following distance
measure:

d(~aj1, ~aj2) = max
t
‖~aj1(t)− ~aj2(t)‖

where ~aj1 and ~aj2 denote two trajectories for the j-th
landmark. It is important to note that the ground truth spectrum
is trimmed to the k − th component to match the dimen-
sionality of the current marginal space Σk. Given the local-
spatio-temporal features extracted from positive and negative
positions, the probabilistic boosting tree (PBT) is applied to
train a strong classifier Dk. The above procedure is repeated,
increasing the search space dimensionality in each step, until
detectors are trained for all marginal spaces Σ0, . . . ,Σr−1.

3) Motion Trajectory Estimation: In this section we de-
scribe the detection procedure for object localization and
motion estimation of valve landmarks from unseen volumetric
sequences. The parameter estimation is conducted in the
marginalized search spaces Σ0, . . . ,Σr−1 using the trained
spectrum detectors D0, . . . , Dr−1 (see Section IV-B.2). Start-
ing from an initial zero-spectrum, we incrementally estimate
the magnitude and phase of each frequency component ~s(k).
At the stage k, the corresponding robust classifier Dk is ex-
haustively scanned over the potential candidates Ck−1×H(k).
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Fig. 10. Diagram depicting the estimation of the comprehensive aortic-mitral estimation. (top) model estimation in cardiac key phases, end-diastole and
end-systole. (bottom) estimation in the full cardiac cycle.

The probability of a candidate Ck ∈ Ck−1×H(k) is computed
by the following objective function (see Fig. 8):

p(Ck) =
n−1∏
t=0

Dk(IDFT (Ck), I, t) (13)

where t = 0, . . . , n − 1 is the time instance (frame index).
After each step k, the top 50 trajectory candidates Ck with high
probability values are preserved for the next step k + 1. The
set of potential candidates Ck+1 is constructed from the cross
product of the candidates Ck and H(k+1). The procedure is
repeated until a final set of trajectory candidates Cr−1, defined
in the full space Σr−1, is computed. The final trajectory is
reported as the average of all elements in Cr−1.

C. Comprehensive Aortic-Mitral Estimation

The final stage in our hierarchical model estimation algo-
rithm is the delineation of the full dynamic morphology of
the aortic-mitral complex. The shape model is first estimated
in the end-diastolic (ED) and end-systolic (ES) phases of the
cardiac cycle. Then the non-rigid deformation is propagated
to the remaining phases using a learned motion prior. Fig. 10
summarizes the steps for non-rigid shape estimation.

1) Estimation in Cardiac Key Phases: Given the previously
detected anatomical landmarks in the ED and ES phases,
a precomputed mean model of the anatomy is placed into
the volumes I(tED) and I(tES) through a thin-plate-spline
(TPS) transform [38]. In order to provide a locally accurate
model estimate, a learning-based 3D boundary detection is
then applied to deforming the shape to capture the anatomical
and pathological variations (see Fig. 10 (top)).

We have shown that learning based methods provide better
results [10], [36], when utilizing both gradients and image
intensities at different image resolutions and by incorporating
local neighborhood. Therefore the boundary detector is trained

using the probabilistic boosting-tree (PBT) on multi-scale
steerable features [10]. In the testing stage, the boundary
detector is used to evaluate a set of hypotheses, which are
drawn along the normal at each of the discrete boundary
points. The new boundary points are set to the hypotheses
with maximal probability. The final model is obtained after
projecting the estimated points to a principal component
analysis (PCA) space. In order to determine the dimension
of the subspace, the cumulated variation v(m) for the
first m modes was computed from the eigenvalues λi as
follows: v(m) =

∑m
i=1 λi/

∑N
i=1 λi [19]. Fig. 11 depicts the

fraction v(m) for the shapes of the aortic and mitral valve
respectively. By demanding the subspace to cover 99.5% of
the shape variation we determined the number of necessary
modes as 72 and 98 respectively.

Fig. 11. Cumulated shape variation for (a) aortic and (b) mitral valves. The
green dot marks the threshold cumulated variance of 0.995.

2) Motion Estimation: Starting from the detection results
in the ED and ES phases, the model deformations are propa-
gated in both forward and backward directions using learned
motion priors similar as in [36] (Fig. 10 (bottom)). The
motion prior is estimated at the training stage using motion
manifold learning and hierarchical K-means clustering, from
a pre-annotated database of sequences containing one cardiac
cycle each. Firstly the temporal deformations are aligned by
4D generalized procrustes analysis. Next a low-dimensional
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embedding is computed from the aligned training sequences
using the ISOMAP algorithm [39], to represent the highly
nonlinear motion of the heart valves. Finally, in order to extract
the modes of motion, the motion sequences are then clustered
with hierarchical K-means based on the Euclidean distance in
the lower dimensional manifold.

To ensure temporal consistency and smooth motion and
to avoid drifting and outliers, two collaborative trackers, an
optical flow tracker and a boundary detection tracker, are used
in our method. The optical flow tracker directly computes the
temporal displacement for each point from one frame to the
next. Initialized by one-step forward prediction, the detection
tracker obtains the deformations in each frame with maximal
probability. The results are then fused into a single estimate
by averaging the computed deformations and the procedure is
repeated until the full 4D model is estimated for the complete
sequence. In this way the collaborative trackers complement
each other, as the optical flow tracker provides temporally
consistent results and its major issue of drifting is addressed
by the boundary detection along with the one-step forward
prediction.

V. MODEL-BASED QUANTIFICATION OF THE
AORTIC-MITRAL APPARATUS

From the estimated patient-specific model we efficiently
derive a wide-ranging morphological and functional charac-
terization of the aortic-mitral apparatus, summarized in Tab. I.
In comparison with the gold standard, which processes 2D
images and performs manual measurements, the benefits of
the proposed automatic quantization are:
• Precision increased by modeling and measuring the nat-

ural three-dimensional valve anatomy.
• Reproducibility through automatic quantification and

avoidance of user-dependent manipulation.
• Functional assessment from dynamic measurements per-

formed over the entire cardiac-cycle.
• Comprehensive analysis including complex parameters

such as shape curvatures, deformation fields and volu-
metric variations.

Comprehensive valve measurements are important in the
clinical workflow during diagnosis and severity assessment,
surgery planning for replacement or repair and percuta-
neous interventions [2]. Valvular dimensions, such as Aortic
Valve Area, Mitral valve Area and Mitral Annulus Area
(Fig. 12), automatically obtained over the whole cardiac
cycle, can benefit cardiologists in evaluating the overall
structural and functional condition. Furthermore, in-depth
analysis of complex pathologies can be performed through
independent Sinus Volumes quantization and Annular Devi-
ation assessment for the aortic and mitral valves, respectively.

Dimensions of the aortic root at the Ventriculoarterial
Junction, Valsalva Sinuses and Sinotubular Junction as well
as the Inter-ostia angle are crucial in planning for aortic
valve replacement and repair surgery [44]. These, along with
measurements of the mitral annulus and leaflets, such as
the mitral Annular circumference, Anterolateral-Posteromedial
diameter, can be automatically computed by the proposed
approach (see Fig.12)

TABLE I
AORTIC-MITRAL MEASUREMENTS, AUTOMATICALLY COMPUTED FROM

THE PATIENT-SPECIFIC MODEL OVER THE ENTIRE CARDIAC CYCLE

Aortic Root
Ventriculoarterial Junct. �,

∫
,∨ [18]

Valsava Sinuses �,
∫

,∨ [18]
Sinotubular Junct. �,

∫
,∨ [18]

Commissure-Hinge Plane ∠
Sinus Volumes

Aortic Landmarks
Commissure-Hinge Distance [18]
Hinge-Ostium Distance [40]
Ostium-Commissure Distance
Inter-Commissural ∨,∠ [18]
Inter-Ostia ∠

Aortic Leaflets
Aortic Valve

∫
[40]

Coaptation Height [18]
Leaflet Height [40]
Effective Cusp Height [40]
Leaflet Free Edge ∨ [40]
Leaflet-Ostium Distance

Mitral Annulus
Annular

∫
,∨ [2], [18]

Annular Deviation Ratio [41]
Annular Non-Planarity ∠ [17]
Sphericity Index

Mitral Landmarks
Inter-Commissural Distance [2]
Inter-Trigonal Distance [2]
Annular-Posterior � [2]
Anterolateral-Posteromedial � [2]
Annular-Commissural Ratio [42]

Mitral Leaflets
Anterior/Posterior Surface

∫
,∨

Valve Opening
∫

[2]
Valve to Area Ratio
Tenting Height and Volume [2], [43]

Aortic-Mitral
Centroid Distances [18]
Inter-Annular ∠ [18]

� - diameter,
∫

- area, ∨ - circumferential length, ∠ - angle.

Emerging percutaneous and minimally invasive valve in-
terventions require extensive non-invasive assessment and can
substantially benefit from the model-based quantification [40].
For instance, precise knowledge of the coronary ostia posi-
tion prevents hazardous ischemic complications by avoiding
the potential misplacement of aortic valve implants. The
method presents an integral three-dimensional configuration
of critical structures (ostia, commissures, hinges, etc.) and
calculates their relative location over the entire cardiac cycle.
Additionally, the joint model characterizes the aortic-mitral
interconnection by quantifying the Inter-Annular angle and
Centroid Distances (Fig. 12), which facilitates the challenging
management of multi-morbid patients.

It is important to notice, that the quantification potential
of the proposed method is not limited to the above mentioned
measurements. Through the consistent and comprehensive spa-
tial and temporal representation, the introduced system offers
unique analysis features, which facilitate decisions during the
whole clinical workflow. For the first time, functional and
morphological measurements can be efficiently performed for
individual valve patients and potentially improve their clinical
management.

VI. EXPERIMENTS

In this section, we demonstrate the performance of the
proposed patient-specific modeling and quantification method
for aortic and mitral valves. Experiments are performed on
a large and comprehensive data set described in Section VI-
A. In section VI-B, we demonstrate the performance of the
model estimation algorithm on cardiac CT and TEE volumetric
sequences. The clinical evaluation in VI-C presents the quan-
tification performance and accuracy for the proposed system.

A. Data Set
Functional cardiac studies were acquired using CT and

TEE scanners from 134 patients affected by various car-
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(a)

(b)

Fig. 12. Examples of aortic-mitral morphological and functional measurements. (a) from left to right: aortic valve model with measurement traces, aortic
valve area, aortic root diameters and ostia to leaflets distances. (b) mitral valve with measurement traces, mitral valve and annulus area, mitral annular deviation
in ED and ES and aortic-mitral angle and centroid distance.

diovascular diseases such as: bicuspid aortic valve, dilated
aortic root, stenotic aortic/mitral, regurgitant aortic/mitral as
well as prolapsed valves. The imaging data includes 690 CT
and 1516 TEE volumes, which were collected from medical
centers around the world over a period of two years. Using
heterogeneous imaging protocols, TEE exams were performed
with Siemens Acuson Sequoia (Mountain View, CA, USA) and
Philips IE33 (Andover, MA, USA) ultrasound machines while
CT scans were acquired using Siemens Somatom Sensation
or Definition scanners (Forchheim, Germany). The ECG gated
Cardiac CT sequences include 10 volumes per cardiac cycle,
where each volume contains 80-350 slices with 153× 153 to
512×512 pixels. The in-slice resolution is isotropic and varies
between 0.28 to 1.00mm with a slice thickness from 0.4 to
2.0mm. TEE data includes an equal amount of rotational (3 to
5 degrees) and matrix array acquisitions. A complete cardiac
cycle is captured in a series of 7 to 39 volumes, depending
on the patient’s heart beat rate and scanning protocol. Image
resolution and size varies for the TEE data set from 0.6 to 1
mm and 136×128×112 to 160×160×120 voxels, respectively.

The ground truth for training and testing was obtained
through an annotation process, which was guided by experts
and includes the following steps:
• the non-rigid landmark motion model is manually

determined by placing each anatomical landmark (Sec.
III-B) at the correct location in the entire cardiac cycle
of a given study.

• the comprehensive aortic-mitral model is initialized
through its mean model placed at the correct image
location, expressed by the thin-plate-spline transform
estimated from the previously annotated non-rigid land-
mark motion model (see Sec. IV-C).

• the ground-truth of the comprehensive aortic-mitral
model is manually adjusted to delineate the true valves
boundary over the entire cardiac cycle.

• from the annotated non-rigid landmark motion model,

the global location and rigid motion model ground-truth
is determined as described in Sec. III-B.

Please note that while CT acquisitions contain both valves, it
is not always the case for the TEE exams, which usually focus
either on the aortic or mitral valve. Ten cases were annotated
by four distinct user for the purpose of conducting inter-user
variability study, which is presented in section VI-C. Also for a
number of four patients we obtained both, CT and TEE studies,
and used that for an inter-modality study also presented in
section VI-C.

B. Model Estimation Performance

The precision of the global location and rigid motion
estimation (Sec. IV-A) is measured at the box corners
of the detected time-dependent similarity transformation.
Hence, the average Euclidean distance between the eight
bounding box points, defined by the similarity transform
(cx, cy, cz), (~αx, ~αy, ~αz), (sx, sy, sz), and the ground-truth
box is reported. To measure the accuracy of the non-
rigid landmark motion estimation (Sec. IV-B), detected and
ground-truth trajectories of all landmarks are compared at
each discrete time step using the Euclidean distance. The ac-
curacy of the surface models obtained by the comprehensive
aortic-mitral estimation (Sec. IV-C) is evaluated by utilizing
the point-to-mesh distance. For each point on a surface
(mesh), we search for the closest point (not necessarily
one of the vertices) on the other surface to calculate the
Euclidean distance. To guarantee a symmetric measurement,
the point-to-mesh distance is calculated in two directions,
from detected to ground truth surfaces and vice versa.

The performance evaluation was conducted using three-
fold cross-validation by dividing the entire dataset into three
equally sized subsets, and sequentially using two sets for
training and one for testing. Table II summarizes the model
estimation performance averaged over the three evaluation
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runs. The last column represents the 80th percentile of the
error values. The estimation accuracy averages at 1.54mm
and 1.36mm for TEE and CT data, respectively. On a standard
PC with a quad-core 3.2GHz processor and 2.0GB memory,
the total computation time for the tree estimation stages is 4.8
seconds per volume (approx 120sec for average length volume
sequences), from which the global location and rigid motion
estimation requires 15% of the computation time (approx
0.7sec), non-rigid landmark motion 54% (approx 2.6sec) and
comprehensive aortic-mitral estimation 31% (approx 1.5sec).
Fig. 13 shows estimation results on various pathologies for
both valves and imaging modalities.

TABLE II
ERRORS FOR EACH ESTIMATION STAGE IN TEE AND CT

TEE Mean Std. Median 80%
Global Location and Rigid Motion 6.95 4.12 5.96 8.72

Non-Rigid Landmark Motion 3.78 1.55 3.43 4.85
Comprehensive Aortic-Mitral 1.54 1.17 1.16 1.78

CT Mean Std. Median 80%
Global Location and Rigid Motion 8.09 3.32 7.57 10.4

Non-Rigid Landmark Motion 2.93 1.36 2.59 3.38
Comprehensive Aortic-Mitral 1.36 0.93 1.30 1.53

For the non-rigid landmark motion, we analyzed the er-
ror distribution of our approach and compared it to optical
flow [45] and tracking-by-detection [46]. Fig. 14(a) presents
the error distribution over the entire cardiac cycle, where
the end-diastolic phase is at t = 0. It can be seen that,
although performed forward and backward, the optical flow
approach is affected by drifting. In the same time, the tracking-
by-detection error is unevenly distributed, which reflects in
temporal inconsistent and noisy results. Fig. 14(b) shows the
error distribution over the 18 landmarks. Both tracking-by-
detection and optical flow perform significantly worse on
highly mobile landmarks as the aortic leaflet tips (landmarks
9, 10 and 11) and mitral leaflet tips (landmarks 15 and 16).
The proposed trajectory spectrum learning demonstrates a time
consistent and model-independent precision, superior in both
cases to reference methods.

(a) (b)

Fig. 14. Error comparison between the optical flow, tracking-by-detection
and our trajectory-spectrum approach distributed over (a) time and (b) detected
anatomical landmarks. The curve in black shows the performance of our
approach, which has the lowest error among all three methods.

C. Quantification Performance and Clinical Evaluation
The quantification precision of the system for the mea-

surements presented in Sec. V is evaluated in comparison to

manual expert measurements. Table III shows the accuracy
for the Ventriculoarterial Junction, Valsava Sinuses and Sino-
tubular Junction aortic root diameters as well as for Annular
Circumference, Annular-Posterior Diameter and Anterolateral-
Posteromedial Diameter of the mitral valve. The Bland-Altman
plots [47] in Fig. 15 demonstrate a strong agreement between
manual and model-based measurements for aortic valve areas
and mitral annular areas.

Moreover, from a subset of 19 TEE patients, we computed
measurements of the aortic-mitral complex and compared
those to literature reported values [18]. Distances between
the centroids of the aortic and mitral annulae as well as
interannular angles were computed. The latter is the angle
between the vectors, which point from the highest point of
the anterior mitral annulus to the aortic and mitral annular
centroids respectively. The mean interannular angle and in-
terannular centroid distance were 137.0±12.2 and 26.5±4.2,
respectively compared to 136.2±12.6 and 25.0±3.2 reported
in the literature [18].

TABLE III
SYSTEM-PRECISION FOR VARIOUS DIMENSIONS OF THE AORTIC-MITRAL

APPARATUS.

Mean STD
Ventriculoarterial Junct. �(cm) 0.137 0.017

Valsava Sinuses �(cm) 0.166 0.043
Sinotubular Junct. �(cm) 0.098 0.029

Annular ∨(cm) 0.846 0.3
Annular-Posterior �(cm) 0.325 0.219

Anterolateral-Posteromedial �(cm) 0.509 0.37

� - diameter, ∨ - circumferential length.

(a) (b)

Fig. 15. Bland-Altman plots for the (a) aortic valve area and (b) mitral
annular area. The aortic valve experiments were performed on CT data from
36 patients, while the mitral valve was evaluated on TEE data from 10 patients,
based on the input of a expert cardiologists.

Based on a subgroup of four patients, which underwent
both, cardiac CT and TEE, we conducted an inter-modality ex-
periment. To demonstrate the consistency of the model-driven
quantification, we obtained the model and measurements from
both CT and TEE scans. We included the aortic valve area,
inter-commissural distances as well as the Ventriculoarterial
Junction, Valsava Sinuses and Sinotubular Junction diameters.
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(a)

(b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 13. Examples of estimated patient-specific models from TEE and CT data: healthy valves from three different cardiac phases in (a) TEE from atrial
aspect and (b) CT data in four chamber view. Pathologic valves with (c) bicuspid aortic valve, (d) aortic root dilation and regurgitation, (e) moderate aortic
stenosis, (f) mitral stenosis, (g) mitral prolapse, (h) bicuspid aortic valve with prolapsing leaflets, (i) aortic stenosis with severe calcification and (j) dilated
aortic root.

The experiment demonstrated a strong correlation r = 0.98,
p < 0.0001 and 0.97− 0.99 confidence interval.

An inter-user experiment was conducted on a randomly
selected subset of ten studies, which have their corresponding
patient-specific valve models manually fitted by four experi-

enced users. The inter-user variability and system error was
computed on four measurements derived from both valves,
i.e. the interannular angle and interannular centroid distance
discussed earlier in this section, performed in end-diastolic
(ED) and end-systolic (ES) phases. The inter-user variability
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was determined by computing the standard deviation for each
of the four different user measurements and subsequently
averaging those to obtain the total variability. To quantify the
system error, we compare the automatic measurement result
to the mean of the different users. Fig. 16 shows the system-
error for the selected sequences with respect to the inter-user
variability. Note that except for 3% of the cases, the system-
error lies within 90% of the inter-user confidence interval.
Thus the variability of measurements obtained by different
users on the same data reveals feasible confidence intervals and
desired precision of the automated patient-specific modeling
algorithm.

Fig. 16. System error compared to the inter-user variability. The sorted
system error (blue bars) and the 80% (light blue area) and 90% (yellow)
confidence intervals of the user variability determined from the standard
deviation.

Finally, we studied our quantification performance on a pa-
tient who underwent a mitral annuloplasty procedure, intended
to reduce mitral regurgitation. Pre- and post- TEE exams were
performed before and after the successful mitral valve repair.
The measurements of the mitral valve area in Fig. 17(a)
demonstrates the regurgitant mitral valve to be cured after
procedure. Although not explicitly targeted, the intervention
had an indirect effect on the aortic valve, also illustrated in
Fig. 17(b) by the annular and valvular areas. The observation
concurs with clinical findings reported in [3], [4], [18] and
shows the converse effect to the one reported by [48], where
an intervention on the aortic affected the mitral valve.

VII. CONCLUSIONS

This paper presented a novel patient-specific modeling
and quantization framework for the aortic and mitral
valves, which comprises their full morphology and function.
A physiologically-based model allows for an anatomically
correct representation of the aortic-mitral valves and their
pathological variations. The hierarchical definition of the
model facilitates an incremental estimation of patient-
specific parameters with increased complexity. The person-
alized model estimation is automatically performed applying

(a)

(b)

Fig. 17. Measurements obtained before (dotted lines) and after (solid lines)
mitral annuloplasty: (a) Aortic (blue) and Mitral (red) valvular area, (b) Aortic
(blue) and Mitral (red) annular area.

robust and efficient learning-based algorithms on cardiac 4D
CT and TEE data. Especially, the proposed trajectory spec-
trum learning method enables the simultaneous estimation
of spatio-temporal landmark parameters, which is a central
problem in computing dynamic models.

From the patient-specific model, we compute for the first
time precise morphological and functional quantification of
the aortic-mitral complex. Extensive experiments performed
on a large heterogeneous data set demonstrated a precision
of 1.54mm on TEE data and 1.36mm on CT data at a speed
of 4.8 seconds per volume. Furthermore, clinical validation
showed a strong inter-modality and inter-subject correlation
for a comprehensive set of model-based measurements. The
method addresses problems of current clinical practice and
shows how to overcome these shortcomings. It may not only
have impact on the clinical workflow in cardiac health care,
such as diagnosis and procedural planning but also design
of prosthetic valves and percutaneous interventions for both
aortic and mitral valves and may help to understand their
interconnection and clinical implications.

ACKNOWLEDGEMENTS

The authors would like to thank all clinical collaborators.
This work has been partially funded by the EU projects Health-
e-Child (IST 2004-027749) and Sim-e-Child.

REFERENCES

[1] W. Rosamond, K. Flegal, G. Friday, K. Furie, A. Go, K. Greenlund,
N. Haase, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones,
M. McDermott, J. Meigs, C. Moy, G. Nichol, C.J. O’Donnell, V. Roger,
J. Rumsfeld, P. Sorlie, J. Steinberger, T. Thom, S. Wasserthiel-Smoller,
and Y. Hong, “Heart disease and stroke statistics–2007 update: a report
from the american heart association statistics committee and stroke
statistics subcommittee,” Circulation, vol. 115, no. 5, pp. 69–171, 2007.

[2] R.O. Bonow, B.A. Carabello, K. Chatterjee, A.C.J. de Leon, D.P. Faxon,
M.D. Freed, W.H. Gaasch, B.W. Lytle, R.A. Nishimura, P.T. OGara,
R.A. ORourke, C.M. Otto, P.M. Shah, and J.S. Shanewise, “Acc/aha
2006 guidelines for the management of patients with valvular heart
disease: a report of the american college of cardiology/american heart
association task force on practice guidelines (writing committee to
develop guidelines for the management of patients with valvular heart
disease),” Circulation, vol. 114, no. 5, pp. 84–231, 2006.



SUBMITTED TO IEEE TRANSACTIONS ON MEDICAL IMAGING 16

[3] E. Lansac, K. Lim, Y. Shomura, W. Goetz, H. Lim, N. Rice, H. Saber,
and C. Duran, “Dynamic balance of the aortomitral junction,” J Thorac
Cardiovasc Surg, vol. 123, pp. 911–918, 2002.

[4] T. Timek, G. Green, F. Tibayan, F. Lai, F. Rodriguez, D. Liang,
G. Daughters, N. Ingels, and D. Miller, “Aorto-mitral annular dynamics,”
Ann Thorac Surg, vol. 76, pp. 1944–1950, 2003.

[5] P. Libby, R.O. Bonow, D.L. Mann, and D.P. Zipes, Braunwalds’s Heart
Disease: A Textbook of Cardiovascular Medicine. Elsevier, 2008.

[6] R.I. Ionasec, Y. Wang, B. Georgescu, I. Voigt, N. Navab, and D. Co-
maniciu, “Robust motion estimation using trajectory spectrum learning:
Application to aortic and mitral valve modeling from 4d tee,” in Proc.
Int’l Conf. Computer Vision, 2009, p. in progress.

[7] R.I. Ionasec, I. Voigt, B. Georgescu, H. Houle, J. Hornegger, N. Navab,
and D. Comaniciu, “Modeling and assessment of the aortic-mitral valve
coupling from 4d tee and ct,” in Proc. Int’l Conf. Medical Image
Computing and Computer Assisted Intervention, 2009, p. in progress.

[8] R.I. Ionasec, B. Georgescu, E. Gassner, S. Vogt, O. Kutter, M. Scheuer-
ing, N. Navab, and D. Comaniciu, “Dynamic model-driven quantification
and visual evaluation of the aortic valve from 4d ct,” in Proc. Int’l Conf.
Medical Image Computing and Computer Assisted Intervention, 2008,
pp. 686 – 694.

[9] O. Ecabert, J. Peters, and J. Weese, “Modeling shape variability for full
heart segmentation in cardiac computed-tomography images,” in Proc.
of SPIE Medical Imaging, vol. 7, no. 2, 2006, pp. 1199–1210.

[10] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu,
“Four-chamber heart modeling and automatic segmentation for 3d car-
diac ct volumes using marginal space learning and steerable features,”
IEEE Trans. on Medical Imaging, vol. 27, no. 11, pp. 1668–1681, 2008.

[11] C. Lorenz and J. von Berg, “A comprehensive shape model of the heart,”
Medical Image Analysis, vol. 10, no. 4, pp. 657–670, 2006.

[12] C.S. Peskin and D.M. McQueen, Case Studies in Mathematical Mod-
eling: Ecology, Physiology, and Cell Biology. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1996.

[13] J. De Hart, G. Peters, P. Schreurs, and F. Baaijens, “A three-dimensional
computational analysis of fluidstructure interaction in the aortic valve,”
Journal of Biomechanics, vol. 36, no. 1, pp. 103–10, 2002.

[14] G. Cacciola, G. Peters, and P. Schreurs, “A three-dimensional mechanical
analysis of a stentless fibre-reinforced aortic valve prosthesis,” Journal
of Biomechanics, vol. 33, no. 5, pp. 521–530, 2000.

[15] E. Votta, F. Maisano, S. Bolling, O. Alfieri, F. Montevecchi, and
A. Redaelli, “The geoform disease-specific annuloplasty system: A
finite element study,” Ann Thorac Surg, vol. 84, pp. 92–101, 2007,
http://dx.doi.org/10.1016/j.athoracsur.2007.03.040.

[16] X. Kuai, J. Zhang, B. Ren, F. Liu, G. Gong, and Y. Zeng,
“Stress analysis on stentless quadrileaflet pericardial mitral valve,”
Communications in Numerical Methods in Engineering, 2007,
http://dx.doi.org/10.1002/cnm.999.

[17] F. Mahmood, S. Karthik, B. Subramaniam, P. Panzica, J. Mitchell,
A. Lerner, K. Jervis, and A. Maslow, “Intraoperative application of
geometric three-dimensional mitral valve assessment package: A fea-
sibility study,” Journal of Cardiothoracic and Vascular Anesthesia,
vol. 22, no. 2, pp. 292–298, 2006, http://dx.doi.org/10.1016/S0140-
6736(06)69208-8.

[18] F. Veronesi, C. Corsi, L. Sugeng, V. Mor-Avi, E. Caiani, L. Weinert,
C. Lamberti, and L.R.M., “A study of functional anatomy of aortic-mitral
valve coupling using 3D matrix transesophageal echocardiography,” Circ
Cardiovasc Imaging, vol. 2, no. 1, pp. 24–31, 2009.

[19] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, “Active shape
models—their training and application,” Computer Vision and Image
Understanding, vol. 61, no. 1, pp. 38–59, 1995.

[20] T.F. Cootes, G.J. Edwards, and C.J. Taylor, “Active appearance models,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 23, no. 6, pp. 681–685,
2001.

[21] C. Corsi, G. Saracino, A. Sarti, and C. Lamberti, “Left ventricular
volume estimation for real-time three-dimensional echocardiography,”
IEEE Trans. Medical Imaging, vol. 21, no. 9, pp. 1202–1208, 2002.

[22] O. Gerard, A.C. Billon, J.-M. Rouet, M. Jacob, M. Fradkin, and C. Al-
louche, “Efficient model-based quantification of left ventricular function
in 3-D echocardiography,” IEEE Trans. Medical Imaging, vol. 21, no. 9,
pp. 1059–1068, 2002.

[23] H.C. v. Assen, M.G. Danilouchkine, A.F. Frangi, S. Ordas, J.J.M.
Westenberg, J.H.C. Reiber, and B.P.F. Lelieveldt, “SPASM: A 3DASM
for segmentation of sparse and arbitrarily oriented cardiac MRI data,”
Medical Image Analysis, vol. 10, no. 2, pp. 286–303, 2006.

[24] M.d. Bruijne, B.v. Ginneken, M. Viergever, and W. Niessen, “Adapting
active shape models for 3d segmentation of tubular structures in medical
images,” 2003.

[25] A. Fossati, M. Dimitrijevic, V. Lepetit, and P. Fua, “Bridging the gap
between detection and tracking for 3D monocular video-based motion
capture,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2007.

[26] L. Taycher, D. Demirdjian, T. Darrell, and G. Shakhnarovich, “Condi-
tional random people: Tracking humans with CRFs and grid filters,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2006, pp.
I: 222–229.

[27] C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas, “Discriminative
density propagation for 3D human motion estimation,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2005, pp. I: 390–397.

[28] L. Wang, X. Geng, C. Leckie, and R. Kotagiri, “Moving shape dynamics:
A signal processing perspective,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2008, pp. 1–8.

[29] I. Akhter, Y. Sheikh, S. Khan, and T. Kanade, “Nonrigid structure
from motion in trajectory space,” in Advances in Neural Information
Processing Systems, 2008, pp. 41–48.

[30] L. Zelnik Manor and M. Irani, “Temporal factorization vs. spatial
factorization,” in Proc. European Conf. Computer Vision, 2004, pp. II:
434–445.

[31] A. Naftel and S. Khalid, “Motion trajectory learning in the DFT-
coefficient feature space,” in Proc. Int’l Conf. Computer Vision Systems,
2006, p. 47.

[32] A. Briassouli and N. Ahuja, “Extraction and analysis of multiple periodic
motions in video sequences,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 29, no. 7, pp. 1244–1261, 2007.

[33] Z. Tu, “Probabilistic boosting-tree: Learning discriminative methods for
classification, recognition, and clustering,” in Proc. Int’l Conf. Computer
Vision, 2005, pp. 1589–1596.

[34] M. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography,” Comm. of the ACM, vol. 24, no. 6, pp. 381–395, June
1981.

[35] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2001, pp. 511–518.

[36] L. Yang, B. Georgescu, Y. Zheng, P. Meer, and D. Comaniciu, “3d
ultrasound tracking of the left ventricle using one-step forward prediction
and data fusion of collaborative trackers,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

[37] Z. Tu, X.S. Zhou, A. Barbu, L. Bogoni, and D. Comaniciu, “Probabilistic
3D polyp detection in CT images: The role of sample alignment,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2006, pp.
1544–1551.

[38] J. Duchon, “Interpolation des fonctions de deux variables suivant le
principe de la flexion des plaques minces,” RAIRO Analyse Numerique,
vol. 10, pp. 5–12, 1976.

[39] J.B. Tenenbaum, V. de Silva, and J.C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319 – 2323, 2000.

[40] M. Akhtar, E.M. Tuzcu, S.R. Kapadia, L.G. Svensson, R.K. Greenberg,
E.E. Roselli, S. Halliburton, V. Kurra, P. Schoenhagen, and S. Sola,
“Aortic root morphology in patients undergoing percutaneous aortic
valve replacement: Evidence of aortic root remodeling,” The Journal
of Thoracic and Cardiovascular Surgery, vol. 137, no. 4, pp. 950 –
956, 2009.

[41] R. Levine, M. Handschumacher, A. Sanfilippo, A.J. ans Hagege, P. Har-
rigan, J. Marshall, and W.A.E., “Three-dimensional echocardiographic
reconstruction of the mitral valve, with implications for mitral valve
prolapse,” Circulation, vol. 80, 1989.

[42] T. Timek, J. Glasson, D. Lai, D. Liang, G. Daughters, N. Ingels, and
C. Miller, “Annular height-to-commissural width ratio of annulolasty
rings in vivo,” Circulation, vol. 112, pp. I–423 – I–428, 2005.

[43] J. Song, S. Fukuda, T. Kihara, M. Shin, M. Garcia, J. Thomas, and
T. Shiota, “Value of mitral valve tenting volume determined by real-time
three-dimensional echocardiography in patients with functional mitral
regurgitation.” American Journal of Cardiology, vol. 98, no. 8, pp. 1088–
1093, 2006.

[44] T.E. David, Cardiac Surgery in the Adult : Aortic Valve Repair and
Aortic ValveSparing Operations. New York, NY, USA: McGraw-Hill,
2008.

[45] Q. Duan, E. Angelini, S. Homma, and A. Laine, “Validation of optical-
flow for quantification of myocardial deformations on simulated RT3D
ultrasound,” in ISBI, 2007.

[46] T. Zhao and R. Nevatia, “3D tracking of human locomotion: a tracking
as recognition approach,” in ICPR, 2002, pp. I: 546–551.



SUBMITTED TO IEEE TRANSACTIONS ON MEDICAL IMAGING 17

[47] J. Bland and D. Altman, “Statistical methods for assessing agreement
between two methods of clinical measurement,” Lancet, 1986.

[48] F. Vanden-Eynden, D. Bouchard, I. El-Hamamsy, A. Butnaru, P. Demers,
M. Carrier, L. Perrault, J. Tardif, and M. Pellerin, “Effect of aortic valve
replacement for aortic stenosis on severity of mitral regurgitation.” Ann
Thorac Surg, vol. 83, pp. 1279–84, 2007.


