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Overview

• Motivation

• RNN Architectures – Examples

• Backpropagation for RNN

• Vanishing Gradient Problem

• Long Short Term Memory networks (LSTM)

• Fun with RNNs



Why RNNs? - Neural Networks and Deep Learning, M. Nielsen

- PyTorch Tutorial: Neural Networks
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Sequential Data: speech, music, text, .. etc
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(RNN), S. Moncada



The Evolution of RNN The Ultimate Guide to Recurrent Neural Networks 

(RNN), S. Moncada



The Evolution of RNN The Ultimate Guide to Recurrent Neural Networks 

(RNN), S. Moncada



The Evolution of RNN The Ultimate Guide to Recurrent Neural Networks 

(RNN), S. Moncada



The Evolution of RNN The Ultimate Guide to Recurrent Neural Networks 

(RNN), S. Moncada

𝑦𝑡

ℎ𝑡

𝑥𝑡



The Evolution of RNN The Ultimate Guide to Recurrent Neural Networks 

(RNN), S. Moncada

𝑦𝑡

ℎ𝑡

𝑥𝑡



The Evolution of RNN The Ultimate Guide to Recurrent Neural Networks 

(RNN), S. Moncada

𝑦𝑡

ℎ𝑡

𝑥𝑡

Note: the same function and the same set

of parameters are used at every time step.
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RNN Architectures The Unreasonable Effectiveness of Recurrent Neural 

Networks, A. Karpathy

e.g. 

Image 

Classificatio

n

e.g. 

Image 

Captioning, 

Music 

Generation

e.g. 

Sentiment 

Analysis

e.g. 

Machine 

Translation

e.g. 

Video 

Classificatio

n
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Networks for Visual Recognition, Fei-Fei Li et al.
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ℎ𝑡 = tanh(𝑊ℎℎ ∙ ℎ𝑡−1 +𝑊𝑥ℎ ∙ 𝑥𝑡 + 𝑏ℎ)

𝑊ℎℎ
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Update hidden state: 
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Output formula: 

𝑦𝑡 = 𝜎(𝑊ℎ𝑦 ∙ ℎ𝑡 + 𝑏𝑦)



Simple Example: Character-Level Language Model

Stanford | CS231n: 

Convolutional Neural Networks 

for Visual Recognition, Fei-Fei 

Li et al.

Task: 

Learn character probability 

distribution from input text.

• Vocabulary:  {h,e,l,o}

• One-hot encoding for 

characters (e.g. h = [1,0,0,0] 

)
• One training example 

“hello”
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Forward 

Pass
Backward 

Pass
“Backpropagation through Time 

(BPTT)” 
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Networks for Visual Recognition, Fei-Fei Li et al.
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Vanishing/Exploding Gradient Problem Stanford | CS231n: Convolutional Neural 

Networks for Visual Recognition, Fei-Fei Li et al.



The Problem of Long-Term Dependencies Understanding LSTM Networks, C. Olah

e.g. Predict the next word in “I grew up in Germany. I speak fluent ….. . ” 
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e.g. Predict the next word in “I grew up in Germany, blah blah blah. I speak fluent 

….. . ” 



Long Short-Term Memory (LSTM) Understanding LSTM Networks, C. Olah



LSTM | Cell State Understanding LSTM Networks, C. Olah
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σ = 0 σ = 1



LSTM | Forget Gate Understanding LSTM Networks, C. Olah
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LSTM | Summary

forget input update output

Understanding LSTM Networks, C. Olah



LSTM | Gradient Flow Stanford | CS231n: Convolutional Neural 

Networks for Visual Recognition, Fei-Fei Li et al.



Gated Recurrent Unit (GRU)

GRU LSTM

Understanding LSTM Networks, C. Olah



Deep RNNs Stanford | CS231n: Convolutional Neural 

Networks for Visual Recognition, Fei-Fei Li et al.
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