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Transcatheter Arterial Chemoembolization (TACE)

https://www.youtube.com/watch?v=2Ny4vvD81XM
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The TACE Procedure

1. C-arm CT imaging and 3-D reconstruction during intervention

2. accurate and fast lesion segmentation

3. computation of path for catheter to tumor
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Environmental Context

Figure: mobile device in interventional environment

May 23, 2016 | Sven Gaube | FAU | Learning-Based Segmentation 6



Accurate and Fast Lesion Segmentation

Accuracy

• only vessels supporting the tumor should be targeted

• all of them have to be treated

=⇒ most recent scan data is needed
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Accurate and Fast Segmentation

Fully manual segmentation
⇒ labeling by hand takes a lot of user time

Fully automated segmentation
⇒ takes a lot of computation time due to lack of world knowledge

Semi-automatic segmentation
⇒ user guided seed based segmentation potentially faster than both
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Current System

GrowCut

• simple algorithm for
segmentation

• iterative method

• no training data needed

Client-server model

• mobile device for input and output

• server for computation
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Goals and Possible Improvements

Current system

• only 25 labeled ROIs for evaluation (about 1203 voxels each)

• does not learn from data

• is dependent on strong server for computation (for 3-D data)

Proposed learning-based system

• accurate segmentation

• makes use of collected data

• server or offline system only used for training

• supporting interactive segmentation

• minimal user input needed

May 23, 2016 | Sven Gaube | FAU | Learning-Based Segmentation 11



Artificial Neural Networks (ANN)

Base unit

• loosely modeled after biological neuron

• weighted sum of inputs propagated to activation function

• output of one layer of units is input of the next layer
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Deep Learning Networks

Deep network

• has several layers

• feature hierarchy

Figure: each layer learns more
complex structures from its
predecessor
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Convolutional Neural Networks (CNN)

Convolutional layer

• kernel weights are learned

• searching for structures in the input data

Subsampling layer

• reduces overfitting

• makes features shift invariant
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U-Net – the First Step

MICCAI 2015 paper by Ronneberger et al. [1]

Architecture

• contracting path to capture context

• symmetric expanding path enables precise localization

• data augmentation by random deformation

Evaluation

• warping error

• rand error

• pixel error
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U-Net – the First Step

Figure: U-Net - Convolutional Networks for Biomedical Image Segmentation
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Artificial Neural Networks

Learning the weights is
computationally expensive
can be parallelized efficiently on a GPU

Computation
Given the weights W, computation can be efficiently performed by
matrix vector multiplication
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Learning Procedure

Let t = t1, t2..., tn be the ground truth

n the number of training samples

oi the produced output

the error E is given by:

E =
1
2

n∑
0

(ti − oi)
2 (1)

resulting optimisation problem is solved via gradient descent
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Advantages of Neural Networks

• expert knowledge for feature crafting not needed

• supports offline learning on GPU

• learned weights transmitted to mobile device

• no server is necessary for on-the-fly segmentation

• training does not require large amounts of data
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Summary

Problem

Find a fast and accurate method for hepatic lesion segmentation on
mobile devices

First Approach

• deep learning based approach for segmentation

• training of CNN using ground truth data

• use of U-Net structure and augmentation to compensate few
available data
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Thank You for Your Attention

Are there any questions?
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