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Pattern Recognition Pipeline A
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m Classification

= Statistical classifiers
= Bayesian classifier
= Gaussian classifier

= Polynomial classifiers

= Non-Parametric classifiers
= k-Nearest-Neighbor density estimation
= Parzen windows
= Artificial neural networks



Probability Estimates A

B A Bayesian classifier decides for the class with the
highest posterior probability.

1 if A=argmax p(Q,[¢)
8(Q,|6) = .

kO otherwise

®m We can compute which class maximizes the
posterior probability by exploiting the Bayesian rule
and using the prior class probability p(2,) and the
class-conditional likelihood p(E\QK):

arg max p(QK ‘E ) =argmax p(Q2_)p(c ‘QK)

K



Probability Estimates — Special Cases A

B In the special case of a Gaussian classifier, there
exists a parametric density function (i.e. normal
distribution) that describes the class-conditional
density.

p(ER2,) = (i, .Z,)

m In that case one can use Maximum Likelihood
Estimation to obtain values for the parameters of
the probability density function (pdf): the mean u_
and the covariance X .

K



Probability Estimates — General N

m Often, we have no information about the model of

the underlying probability density function, about
now the features are distributed.

B How can we obtain estimates of the posterior
probability, or the class prior or the likelihood?

B We could try to approximate the distribution of the
features with a more general model like a mixture of
Gaussians, or we use a non-parametric approach.

B Non-parametric classifiers are specifically
designed for handling non-parametric
representations of probability densities.



Non-Parametric Density Estimators A

B The various types of non-parametric classifiers differ
from one another by the kind of non-parametric
density estimator that they use.

B A non-parametric density estimator is the term used
for describing a methodology for estimating the

probability density function of a random variable
from a finite sample set.

B The simplest nonparametric density estimator is the
histogram estimator, where we obtain pdf

estimates by computing the relative frequencies in a
histogram.



Histogram Estimator A

B Formally, a histogram is a function g(i) that counts the number
of observations that fall into each of b disjoint categories
(known as bins). If N is the total number of observations then
the histogram function must satisfy the following equation:

N = Ega)

m The graph of a histogram is merely one way to represent a
histogram. —
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Histogram of the Lena image courtesy of J.-M. Vezien http://www.limsi.fr/Individu/vezien/trima.html



Histogram and Relative Frequencies A

B By counting how many samples fall within each bin
one can compute relative frequencies.

B For scalar features, it is straightforward to obtain
relative frequency estimates. The probability that the
scalar feature ¢, has the particular value v is:

m _ #samples in the bin of v

c,=V)=—=
ple=v) N total # samples

B Estimating the probability of a particular value
occurring simply involves counting.



A Realistic Example A

m Consider a training data set of N=10° (1 million) samples.

The Compaq skin database for example is composed of
2000 images with 22.669.739 skin pixels and
149.119.846 non-skin pixels.

B Assume a 15-dimensional feature vector, ¢ & R".

B |Let us construct a histogram with b=10 bins in each of the
15 dimensions.

® We have a total of 101> bins.
B There are many more bins than feature vectors.

B Even in the best case scenario, where our training
samples are nicely spread and we get no duplicates, we
still have at least 101>-10% empty bins.
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Remarks on Histograms A

B There is no "best" number of bins.

B Methods have been developed for determining the
optimal number of bins, but they generally make
strong assumptions about the shape of the
distribution.

m Different bin sizes can reveal different characteristics
of the data.

B The appropriate bin width is typically determined via
experimentation.

® In a similar manner, the end points of the bins can
affect the resulting estimated density.

m |Lastly, histograms, unlike pdfs are discontinuous.



Region-Based Approach A

m What is the probability that a particular feature

vector c¢ will fall within a specific sub-volume
(region), say R, of the feature space?

m If we knew the probability density function it would
be straightforward to compute such a probability.

B The probability of observing a feature ¢ in a specific
sub-region R of the feature space (if the density
function is known) is:

P =p(E ER)= [ p(&)dc =~ p(©)V

where V is the volume of region R.
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Regions and Class-Conditional Probabilities 4

B Assume that all the features vectors that fall in
region R are all associated with class Q_ and that all
the features vectors that belong to class Q,_ fall in
region R.

B One can then get an estimate of the class-conditional
probability for class Q_ as follows:

(E & R) _ 2(K)
V NV
where g(k) is the number of samples in region R, i.e.

p@Q,) ="

in class Q..
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Remarks on Region-Based Approaches A

B Thus, using regions and knowing the pdf one can
measure P = p(¢c € R) and when regions are
associated with classes p(c|Q,).

B Region-based density estimators provide good class-
conditional approximations when the volumes are
infinitesimally small, V —=0, and N — o,

B Histograms can be seen as a special case of a
region-based approach, where all regions have V=1.

B How do we estimate P if we don't have the pdf?
®m How do we compute the size of the volume V?
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Relative Frequency A

B Assume we have N training samples which are
uniformly distributed.

B Using the binomial distribution we can compute the
probability that K samples (out of the N) fall within
the region R as:

N
P(cER|=K)=| |P*A-P)"*
K,
where P in this equation is the probability of having 1

feature vector fall in region R. Recall that P = p(c € R)
and we are examining one feature at a time.
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Relative Frequency - Mean Value A

B According to the binomial distribution, the expected
value of K is:

E{K}=NP = E{K/N)}=P

B This equation indicates that when we compute the
relative frequencies (i.e. how many samples fall
within a region over the total number of samples),
we get as a mean the P we were looking for.

m In other words from the relative frequencies we can
get an unbiased estimate of P.
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Relative Frequency - Variance A

m Similarly, according to the binomial distribution the
variance of K is:

E{(K - NP)*} = NP(1-P)
divide both sides with N2

— E{(% - P)z} - P(IA_] P)

B This last equation indicates that as N — « the
variance in relative frequencies, K/N, approaches 0.

B So relative frequencies have a mean that is
approximately P and a variance that approaches 0O
for an infinitely large sample set.
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Conclusions on Relative Frequencies A

B For uniformly distributed training samples:
1. The expected value of relative frequencies is P.

2. If N — x , the variance of the relative frequencies
approaches 0.

B These two facts imply that the probability density
function of the relative frequencies p(K/N) is sharply
peaked.

m Recall that P = p(¢ €R) and that given P one can
estimate the likelihood P(¢|R,)=p(c ER)/V .
B Thus, one can obtain density estimates of the class-

conditional density by analyzing relative frequencies
in different regions of feature space.
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Density Estimation from Relative Frequencies

m Recall that: P=p(c ER)= fp(E)dE = p(c)V
R

®m Thus: P
C)=—
p(c) >

m We have also shown that for uniform distributions from

the relative frequencies we obtain an estimate of P:
K
P=—
N

B Hence, from the relative frequencies we can also get an

estimate of p(c):
K

P(C)=W
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Remarks on Density Estimation A
. K
p(c) = NV

B The larger the size of the training set N, the better.
B The smaller the volume V, the more accurate the estimate.
B So what is the right choice for V?

m Option 1: Use a fixed value for K and find the
corresponding V from the data

=> K-nearest-neighbor (fix K, look for a V)

B Option 2: Use a fixed volume V and find the corresponding
value of K from the data

=> kernel-based density estimation (fix V, look for a K)



K-Nearest Neighbor Density Estimation A

B A K-nearest neighbor classifier, assigns a feature

vector ¢, to the class that gets the majority vote
among its K nearest neighbors in feature space.

m How does this relate to p(¢) =K/(NV)?

C,

m Grow a sphere centered around ¢, . Stop when it is

big enough to hold K samples. The volume of the
sphere is the volume V.
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Density Estimation — Fixed K )

B The volume V is a function of K, V(K).

B Thus, we now have:
K

NV (K)
m Different K values will give different pdf estimates.

p(c) =

B The larger the K the smoother the pdf estimate.

B From the simplest viewpoint, a classifier that uses
K-nearest neighbor density estimation, is a K-
nearest neighbor classifier.

B From a Bayesian viewpoint, such a classifier uses
the K-nearest neighbors to obtain a posterior
probability estimate.



K-NN Density Estimates and Bayes Classific. ~

m Assume we have N training samples ¢,,C,,...,Cy .

m Let NV_of these N features belong to class Q..

B Assume L disjoint classes: EN =N

m Consider a sphere around ¢ Iarge enough to hold K
features. Then

-y o= 1 I c K
1. The class conditional density is P(C‘QK) -

NV
where K. is the number of features in the sphere

that belong to class Q..

K

2. The pdf of the feature space is p(E) = NV

3. The class prioris p(Q, )= ZX’;



K-NN Density Estimates and Bayes Classific. ~

m According to the Bayesian decision rule:

Q2 c|€2
A= argmaxp(QK‘E) = arg max P k)pfc‘ K)
3 N K" p(c)
k k
N NV
= argmax ——
NV
= ar maxK"
B

B S0 to maximize the posterior probability one has to
maximize the ratio K /K. One must decide for the
class that has the most samples in the sphere that
includes just K features.



A K-NN Theorem A

m Recall that pg is the error probability of the ideal
Bayesian classifier and is the lower limit in the
probability of misclassification that we can achieve.

m Let p,, be the error probability of the K-nearest
neighbor classifier. Then:

K-1
where K is the number of neighbors in the K nearest
neighbor classifier.

K
Pp < Pyy = Pp|l2—-——Dp

B Furthermore, when K=N — @ :

Py < Py <2Dg
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Conclusions on the K-NN Classifier A

B So the K-nearest neighbor classifier, though simple
has a pretty good performance.

B So why bother with other more complex classifiers?

B We need to store all the training samples and use
them during each classification decision.
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Kernel Density Estimation A
m Recall that for uniformly distributed samples
~ K
pc)=—
NV

B We have already examined how we can obtain an
estimate of the pdf by selecting a value for K and allowing
V to vary.

m We can also fix V and allow K to vary. This is called kernel
density estimation.

B Kernel density estimation is a fundamental data
smoothing problem, where inferences about the
population are made based on finite set of data samples.

m It is also known as the Parzen-Rosenblatt window(s)
method, or just Parzen window(s).
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Main Concept of Parzen Windows N

B Recall that we said that two of the problems with

histograms is that the obtained estimates :
= depend on the width of the bins
= depend on the endpoints of bins

B Kernel density estimators, remove the dependence
on the end points of the bins, by centering each of
the bins (more appropriately hypecubes) at each
data point.

® The width of the block can vary.

B So instead of the bins of the histogram we have
hypercubes of side length h, which center around
each feature vector ¢.
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Hypercube N

m Our goal is to approximate p(c) =I%\TV’ where V is
the volume of a region R in which K samples exist.

B Let us assume that the
region R we are considering
is a d-dimensional hypercube hy7
(i.e. we are in d-dimensional

feature space) with side
length A.

® The volume of the hypercube

IS: V=hd

C3A
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Kernel Function A

B As a first step we need to measure distances within
and around the hypercube,

—

m Given a new feature vector ¢ and a training sample ¢
compute a normalized distance vector iy between

them: ii=d(c,C)
B The vector u is normalized by the length of the cube.
B A kernel function can then be defined as:
1if|u|< 1) forj=12...d

\O otherwise

H(u) =+

m This uniform kernel function returns 1 if the sample is
inside the hypercube of length 1 and 0 otherwise.



Use of the Hypercube and Kernel Function N

B An equivalent way of defining the uniform kernel

function is: r
H(Ha-a _Juitfe-él<(hs)

h )_ 0 otherwise

B Use: Given a new feature vector ¢ , we center the
hypercube at ¢ and examine how many of the
feature vectors in our training set fall inside the
hypercube.

J\\

B The number of features that fall in a hypercube

around c is: N
k=3 H{le-c.i)
i=1
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Hypercubes in Feature Space A

B Hypercubes can overlap.
m Jt depends on the data.

A
Cs3
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Density Estimation Using Kernel Functions A

m Our goal is to estimate p(c) =I%\7V .

B We know N, the number of our training samples.
m We know V, V =h“.

B We can use the kernel function to compute K:

N
K- SH(E-z|/n)
i=1
B Thus, we can estimate the pdf as follows:

iH(HE _Ei /h)

E — =1
p(c) VA
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Kernel Functions A

B Like the histogram, the uniform kernel function also
has discontinuities.

B Thus, in practice other kernel functions are used that
result in @ smoother estimated density.

B For example, a Gaussian (a.k.a. normal) kernel is
commonly used:

e -, o le=almy
H Hl=———e 2
A ) V21
m Another widely used kernel is the biweight or quartic:
= 15 L \2 L L
H(HC —¢; )=< z(l—(‘c —C, /h) ) if (Hc —cl.H/h) <1
h 0 otherwise




Plots of Different Kernel Functions
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Density Estimation — Parzen Windows N

B The number of samples K, that fall inside the
hypercube is a function of K(V).

B Thus, for Parzen windows we have:

. K@)
C)=—"-—
p(c) NV
m Different hypercube sizes values will give different

pdf estimates.

m A feature vector ¢, will be recognized as belonging
to the class that gets the majority vote in the
nypercube centered at ¢ .

B Parzen windows are a general tool for estimating
probability density functions from discrete samples.
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Remarks on Kernel Density Estimation A

B Computing K using a kernel function involves all
samples in the training set. Thus, obtaining a pdf
estimate can become a costly operation, especially
as N becomes very very large (a desirable property).

B Kernel based density estimation is basically a
superposition of (smeared) hypercubes.

B The bins are not predefined (as in the case of
histograms), but depend on data.

B As in K-nearest neighbor the entire training data
must be available at classification time.

B As in histogram the width of the bins can affect the
resulting pdf estimates.
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Hypecube Size N

B The width of the hypercube h directly controls the
smoothness of the resulting pdf.

p-values

B A low h, in this case h=0.1 can result in underfitting
or oversmoothing.
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Hypecube Size - oversmoothing A
< /,.;
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p-values

B As h decreases, in this case h=0.05 the amount of
smoothing decreases.
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Hypecube Size - reasonable smoothing Ay
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B As h decreases further, in this case h=0.02 the

approximation better captures the attributes of the
sample data.
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Hypecube Size - overfitting A
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B As h decreases even further, in this case h=0.005
the approximation ends up overfitting the sample
data.
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References A

1. The kernel density estimation plots and the effect of the hypecube width are adapted
from the presentation of S. Scheid, “Introduction to Kernel Smoothing”,
http://compdiag.molgen.mpg.de/docs/talk 05 01 04 stefanie.pdf




