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Framework of Statistical Classifiers A

m A statistical classifier typically uses a probabilistic
decision function:

8(Q;[c):¢ = Q,
m Each decision function o() has a risk associated with
It: X
R(©) = [ ¥ u,(€)(Q,[¢)dé

Rc A=0
where ©
1, (€)= Y 1, P(Q,)p(E|RQ,)

K=1



Framework of Statistical Classifiers - cont A

B The optimal classifier is the one that uses the
decision function delta that minimizes the risk R(0):

0 = argmin R(0)
5

which occurs when the decision function “votes” for
the minimal u,(c) value.

B Any classifier that maximizes posterior probabilities
is a Bayesian classifier:

1 if A=argmax p(Q,[c)
8(Q,|6) = «

\O otherwise



Gaussian Classifier Ay

B It is a Bayesian classifier where we have normally
distributed class-conditional feature vectors p(c|Q,).

m Example: 2-class problem, €2, €2,.

B The training data includes N sample feature vectors
from class Q, and M sample features vectors from £2,.

B The feature vectors within each class are normally
distributed.



Gaussian Classifier Example A

B Since the Gaussian classifier is a Bayesian classifier

we have to decide based on the maximal posterior
probability p(2,|c).

m How can we compute, P([¢) and p(R,[c)?

B Use Maximum Likelihood Estimation (MLE).

Review: It is a statistical method that can be used
when we have a fixed data set and an underlying
probability model to estimate the most likely values
of the parameters of the underlying probability

model. For normal distributions MLE gives a unique
solution.
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Gaussian Classifier Example - continued A

B More specifically:m?xp(QA\E) = m?Xp(QA)p(E\QA)

B Assuming that our training data is a fair representation
of the true population, the class probability can be
estimated from the samples as follows:

N
0O)=
p( 1) N+ M

B The class conditional probability is normally distributed
p(g‘gl) = W(Eaﬁqazl)

m Via MLE 4, =%§1Ei and 2, =%2(15i_‘al)(15i_‘&1)T
i=1 =1
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Gaussian Classifier Example - continued A

m Similarly we replace p(Qz\E) = p(Qz)p(E\Qz)

B Since the two classes represent the entire population
we can simply use p(,) in estimating the class
probability for €2,:

p(€2,) =1-p(L2)
m The class conditional probability for the 2nd class £2,
is also normally distributed:

p(g‘gz) = %(Eaﬁzazz)

1 & 2 1 A T
m Via MLE l_/iz =ME 5,- and 2, =Mz(zgi_ﬁ2)(25i_ta2)
i=1 /



Decision Rule of a Gaussian Classifier

m Once we have estimated p(,[¢) and p(R,/6) we
can assign the feature vector ¢ to the class that
gives the largest posterior probability.

B The decision rule for a Gaussian classifiers is:

1 if A=argmax p(Q )p(ElQ.)
59,7 = gmax p( ) p(c|

\O otherwise

where
A = argmax p(Q,) p(€ Q)

= argmax p(Q). N (@ fi, %)
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Decision Rule of a Gaussian Classifier - cont

Keep on expanding...
A =argmax p(Q2 ) (c,u X, )

A= argKmaX log(p(QK)W(Eaﬁsz))
A= arg&ax(log(p(QK ) +log( @ .0, .2,)))

1 a5 (e-a)
A= argmax(log( p(L2 )) + log( \/— e 2 ))
K ZJTZK
1 1 T
A= | Q2 | -—(c-u) = (¢ -u
argKmax( Og(P( K)) + Og(\/ﬁ) > (C MK) K« (C U ))

1 1 N
A= argmax(log(p(Q ))—Elog(‘ZﬂZ D 5( —MK) 2 (C_MK))
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Parameter Tying A

m Often, when we have too many parameters, we tie
together one degree of freedom to simplify the
problem at hand. This is called parameter tying.

B In the case of the decision function of a Gaussian
classifier we tie together the covariance of the
different classes.

B In other words, we assume all classes have the

same covariance:
=2, forxk=12,...K

m In that case: Term independent of
maximizing parameter

’/-\ 1 T
A= argmax(log( p(€2, )) —— 5(5 — ﬁK) 2‘1(5 - ﬁx)
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Further Simplification A

B The 3" term also becomes simpler... . . f
- o\l -1/~ = Term independent o
(C — MK) > (C — MK) =% maximizing parameter.

Term constant for each

+ 0> class and independent of
the input feature vector.

ATl  —T~—l— These two terms are
- U2 c—-c 2 M;cplinearin C .
m If we look at the function we are trying to maximize,
i.e. the a-posteriori probability

A = argmax p(Q,) p(¢|Q,)

1, . e -
= argmax log(p(QK))—E( —MK)TZ 1(0 - i, )

we notice that it is linear in the components of c.
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General Form of Gaussian Decision Rule A

B Thus, when the class conditional probabilities are

normally distributed and have the same covariance 2
then the decision rule is of the form of a linear

equation: N
A=argmaxd ¢ +b_

K

m Why compute the mean and variance and not
directly recover the coefficients a_ and b,_ of the
linear equation?

B One could do that, and then we have the more

general case of directly computing linear decision
boundaries.
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Distinct Covariances A

m If the covariance matrix of the class-conditional
probabilities varies among classes

2, =2, fork=12,..K, A=12,...Kand A =K

then the term ¢ =.'¢ can not be ignored in the
maximizing function:

(¢-i,) =/(c-m)= ¢'Z)c + iz,
MTZ = _gTy-l MK

B This means that the decision boundary is given by a
quadratic function.
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Summary A

B Using a Gaussian classifier involves computing, for
eachclass Q : p(Q ), p and X .

m All these quantities can be estimated from the
training data.

B These values are then used in the decision function:
1 1,. . e -
A = argmax| log( p(RQ,)) - Elog(‘ZﬂZKD - E(C — MK)T > (¢ -1,)
B The class that maximizes this function is then picked
as the class of the feature vector c.
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Remarks A

B There are two important issues that one should
keep in mind.

1. How good is my training data?

2. Are the feature vectors within each class truly

normally distributed?
= Classify assuming the normal distribution assumption holds.
If the system works, then the assumption was valid.

= Apply statistical tests that verify whether the normal
distribution assumption holds.

= Select feature extraction methods like PCA that generate
normally distributed features



