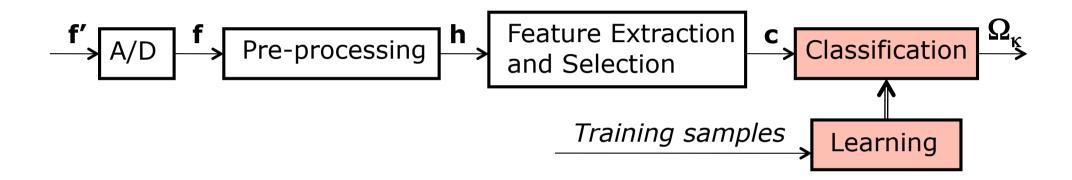
Statistical Classifiers

Gaussian Classifier

Dr. Elli Angelopoulou

Lehrstuhl für Mustererkennung (Informatik 5) Friedrich-Alexander-Universität Erlangen-Nürnberg

Pattern Recognition Pipeline



- Classification
 - Statistical classifiers
 - Bayesian classifier
 - Gaussian classifier

Framework of Statistical Classifiers

A statistical classifier typically uses a probabilistic decision function:

$$\delta(\Omega_{\lambda}|\vec{c}):\vec{c}\to\Omega_{\lambda}$$

Each decision function $\delta()$ has a risk associated with it:

$$R(\delta) = \int_{R\vec{c}} \sum_{\lambda=0}^{K} u_{\lambda}(\vec{c}) \delta(\Omega_{\lambda} | \vec{c}) d\vec{c}$$

where

$$u_{\lambda}(\vec{c}) = \sum_{\kappa=1}^{K} r_{\lambda,\kappa} p(\Omega_{\kappa}) p(\vec{c} | \Omega_{\kappa})$$

Framework of Statistical Classifiers - cont

■ The optimal classifier is the one that uses the decision function delta that minimizes the risk $R(\delta)$:

$$\hat{\delta} = \underset{\delta}{\operatorname{arg\,min}} R(\delta)$$

which occurs when the decision function "votes" for the minimal $u_{\lambda}(\vec{c})$ value.

Any classifier that maximizes posterior probabilities is a Bayesian classifier:

$$\delta(\Omega_{\lambda}|\vec{c}) = \begin{cases} 1 & \text{if } \lambda = \arg\max p(\Omega_{\kappa}|\vec{c}) \\ 0 & \text{otherwise} \end{cases}$$

Gaussian Classifier

- It is a Bayesian classifier where we have normally distributed class-conditional feature vectors $p(\vec{c}|\Omega_{\kappa})$.
- **Example:** 2-class problem, Ω_1 , Ω_2 .
- The training data includes N sample feature vectors from class Ω_1 and M sample features vectors from Ω_2 .
- The feature vectors within each class are normally distributed.

$$\Omega_{1}: \left\{ {}^{1}\vec{c}_{1}, {}^{1}\vec{c}_{2}, \dots, {}^{1}\vec{c}_{N} \right\} \in \mathcal{N}(\vec{c}, \vec{\mu}_{1}, \Sigma_{1})
\Omega_{2}: \left\{ {}^{2}\vec{c}_{1}, {}^{2}\vec{c}_{2}, \dots, {}^{2}\vec{c}_{M} \right\} \in \mathcal{N}(\vec{c}, \vec{\mu}_{2}, \Sigma_{2})$$

Gaussian Classifier Example

- Since the Gaussian classifier is a Bayesian classifier we have to decide based on the maximal posterior probability $p(\Omega_{\lambda}|\vec{c})$.
- How can we compute, $p(\Omega_1|\vec{c})$ and $p(\Omega_2|\vec{c})$?
- Use Maximum Likelihood Estimation (MLE).

 Review: It is a statistical method that can be used when we have a fixed data set and an underlying probability model to estimate the most likely values of the parameters of the underlying probability model. For normal distributions MLE gives a unique solution.

Gaussian Classifier Example - continued

- More specifically: $\max_{\lambda} p(\Omega_{\lambda} | \vec{c}) = \max_{\lambda} p(\Omega_{\lambda}) p(\vec{c} | \Omega_{\lambda})$
- Assuming that our training data is a fair representation of the true population, the class probability can be estimated from the samples as follows:

$$p(\Omega_1) = \frac{N}{N+M}$$

The class conditional probability is normally distributed

$$p(\vec{c}|\Omega_1) \approx \mathcal{N}(\vec{c}, \vec{\mu}_1, \Sigma_1)$$

■ Via MLE $\vec{\mu}_1 = \frac{1}{N} \sum_{i=1}^{N} {}^{1}\vec{c}_i$ and $\Sigma_1 = \frac{1}{N} \sum_{i=1}^{N} {}^{1}\vec{c}_i - \vec{\mu}_1 {}^{1} {}^{1}\vec{c}_i - \vec{\mu}_1 {}^{1}$

Gaussian Classifier Example - continued

- Similarly we replace $p(\Omega_2|\vec{c}) = p(\Omega_2)p(\vec{c}|\Omega_2)$
- Since the two classes represent the entire population we can simply use $p(\Omega_1)$ in estimating the class probability for Ω_2 :

$$p(\Omega_2) = 1 - p(\Omega_1)$$

■ The class conditional probability for the 2^{nd} class Ω_2 is also normally distributed:

$$p(\vec{c}|\Omega_2) \approx \mathcal{S}(\vec{c}, \vec{\mu}_2, \Sigma_2)$$

■ Via MLE
$$\vec{\mu}_2 = \frac{1}{M} \sum_{i=1}^{M} {}^2\vec{c}_i$$
 and $\Sigma_2 = \frac{1}{M} \sum_{i=1}^{M} {}^2(\vec{c}_i - \vec{\mu}_2) ({}^2\vec{c}_i - \vec{\mu}_2)^T$

Decision Rule of a Gaussian Classifier

- Once we have estimated $p(\Omega_1|\vec{c})$ and $p(\Omega_2|\vec{c})$ we can assign the feature vector \vec{c} to the class that gives the largest posterior probability.
- The decision rule for a Gaussian classifiers is:

$$\delta(\Omega_{\lambda}|\vec{c}) = \begin{cases} 1 & \text{if } \lambda = \underset{\kappa}{\operatorname{argmax}} p(\Omega_{\kappa}) p(\vec{c}|\Omega_{\kappa}) \\ 0 & \text{otherwise} \end{cases}$$

where

$$\lambda = \underset{\kappa}{\operatorname{arg\,max}} p(\Omega_{\kappa}) p(\vec{c} | \Omega_{\kappa})$$

$$\lambda = \underset{\kappa}{\operatorname{arg\,max}} p(\Omega_{\kappa}) \mathcal{N}(\vec{c}, \vec{\mu}_{\kappa}, \Sigma_{\kappa})$$

Decision Rule of a Gaussian Classifier - cont

Keep on expanding...

$$\lambda = \underset{\kappa}{\operatorname{arg\,max}} p(\Omega_{\kappa}) \mathcal{N}(\vec{c}, \vec{\mu}_{\kappa}, \Sigma_{\kappa})$$

$$\lambda = \underset{\kappa}{\operatorname{arg\,max}} \log(p(\Omega_{\kappa}) \mathcal{N}(\vec{c}, \vec{\mu}_{\kappa}, \Sigma_{\kappa}))$$

$$\lambda = \underset{\kappa}{\operatorname{arg\,max}} \left(\log(p(\Omega_{\kappa})) + \log(\mathcal{N}(\vec{c}, \vec{\mu}_{\kappa}, \Sigma_{\kappa}))\right)$$

$$\lambda = \underset{\kappa}{\operatorname{arg\,max}} \left(\log(p(\Omega_{\kappa})) + \log\left(\frac{1}{\sqrt{2\pi\Sigma_{\kappa}}}e^{-\frac{1}{2}(\vec{c}-\vec{\mu}_{\kappa})^{T}\Sigma_{\kappa}^{-1}(\vec{c}-\vec{\mu}_{\kappa})}\right)\right)$$

$$\lambda = \underset{\kappa}{\operatorname{arg\,max}} \left(\log(p(\Omega_{\kappa})) + \log\left(\frac{1}{\sqrt{2\pi\Sigma_{\kappa}}}e^{-\frac{1}{2}(\vec{c}-\vec{\mu}_{\kappa})^{T}\Sigma_{\kappa}^{-1}(\vec{c}-\vec{\mu}_{\kappa})}\right)\right)$$

$$\lambda = \underset{\kappa}{\operatorname{arg\,max}} \left(\log(p(\Omega_{\kappa})) - \frac{1}{2} \log(|2\pi\Sigma_{\kappa}|) - \frac{1}{2} (\vec{c} - \vec{\mu}_{\kappa})^{T} \Sigma_{\kappa}^{-1} (\vec{c} - \vec{\mu}_{\kappa}) \right)$$

Parameter Tying

- Often, when we have too many parameters, we tie together one degree of freedom to simplify the problem at hand. This is called parameter tying.
- In the case of the decision function of a Gaussian classifier we tie together the covariance of the different classes.
- In other words, we assume all classes have the same covariance:

$$\Sigma = \Sigma_{\kappa}$$
, for $\kappa = 1, 2, ... K$

In that case:

 $\lambda = \underset{\kappa}{\operatorname{arg\,max}} \left(\log(p(\Omega_{\kappa})) - \frac{1}{2} \log(2\pi \Sigma) - \frac{1}{2} (\vec{c} - \vec{\mu}_{\kappa})^{T} \Sigma^{-1} (\vec{c} - \vec{\mu}_{\kappa}) \right)$

Term independent of

Further Simplification

■ The 3rd term also becomes simpler...

$$(\vec{c} - \vec{\mu}_{\kappa})^{T} \Sigma^{-1} (\vec{c} - \vec{\mu}_{\kappa}) = \vec{c}^{T} \Sigma^{-1} \vec{c}$$

Term independent of maximizing parameter.

+
$$\vec{\mu}_{\kappa}^T \Sigma^{-1} \vec{\mu}_{\kappa}$$

Term constant for each + $\vec{\mu}_{\nu}^{T} \Sigma^{-1} \vec{\mu}_{\nu}$ class and independent of the input feature vector.

$$- \vec{\mu}_{\kappa}^{T} \Sigma^{-1} \vec{c} - \vec{c}^{T} \Sigma^{-1} \vec{\mu}_{\kappa}$$
 These two terms are linear in \vec{c} .

If we look at the function we are trying to maximize, i.e. the a-posteriori probability

$$\lambda = \underset{\kappa}{\operatorname{arg\,max}} p(\Omega_{\kappa}) p(\vec{c} | \Omega_{\kappa})$$

$$= \underset{\kappa}{\operatorname{arg\,max}} \left(\log(p(\Omega_{\kappa})) - \frac{1}{2} (\vec{c} - \vec{\mu}_{\kappa})^{T} \Sigma^{-1} (\vec{c} - \vec{\mu}_{\kappa}) \right)$$

we notice that it is linear in the components of \vec{c} .

General Form of Gaussian Decision Rule

Thus, when the class conditional probabilities are normally distributed and have the same covariance Σ then the decision rule is of the form of a **linear** equation:

 $\lambda = \underset{\kappa}{\operatorname{argmax}} \vec{a}_{\kappa}^{T} \vec{c} + b_{\kappa}$

- Why compute the mean and variance and not directly recover the coefficients \vec{a}_{κ} and b_{κ} of the linear equation?
- One could do that, and then we have the more general case of directly computing linear decision boundaries.

Distinct Covariances

If the covariance matrix of the class-conditional probabilities varies among classes

$$\Sigma_{\lambda} \neq \Sigma_{\kappa}$$
, for $\kappa = 1,2,...K$, $\lambda = 1,2,...K$ and $\lambda \neq \kappa$ then the term $\vec{c}^T \Sigma_{\kappa}^{-1} \vec{c}$ can not be ignored in the maximizing function:

$$(\vec{c} - \vec{\mu}_{\kappa})^{T} \Sigma_{\kappa}^{-1} (\vec{c} - \vec{\mu}_{\kappa}) = \vec{c}^{T} \Sigma_{\kappa}^{-1} \vec{c} + \vec{\mu}_{\kappa}^{T} \Sigma_{\kappa}^{-1} \vec{\mu}_{\kappa}$$

$$- \vec{\mu}_{\kappa}^{T} \Sigma_{\kappa}^{-1} \vec{c} - \vec{c}^{T} \Sigma_{\kappa}^{-1} \vec{\mu}_{\kappa}$$

This means that the decision boundary is given by a quadratic function.

Summary

- Using a Gaussian classifier involves computing, for each class $\Omega_{\kappa}\colon \ p(\Omega_{\kappa})$, $\vec{\mu}_{\kappa}$ and Σ_{κ} .
- All these quantities can be estimated from the training data.
- These values are then used in the decision function:

$$\lambda = \underset{\kappa}{\operatorname{arg\,max}} \left(\log(p(\Omega_{\kappa})) - \frac{1}{2} \log(|2\pi\Sigma_{\kappa}|) - \frac{1}{2} (\vec{c} - \vec{\mu}_{\kappa})^{T} \Sigma_{\kappa}^{-1} (\vec{c} - \vec{\mu}_{\kappa}) \right)$$

■ The class that maximizes this function is then picked as the class of the feature vector \vec{c} .

Remarks

- There are two important issues that one should keep in mind.
- 1. How good is my training data?
- 2. Are the feature vectors within each class truly normally distributed?
 - Classify assuming the normal distribution assumption holds.
 If the system works, then the assumption was valid.
 - Apply statistical tests that verify whether the normal distribution assumption holds.
 - Select feature extraction methods like PCA that generate normally distributed features