|
|||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use TrainingException | |
---|---|
bin | |
classifiers | |
statistics |
Uses of TrainingException in bin |
---|
Methods in bin that throw TrainingException | |
---|---|
static void |
Initializer.main(java.lang.String[] args)
|
Uses of TrainingException in classifiers |
---|
Methods in classifiers that throw TrainingException | |
---|---|
void |
Classifier.train(DataSet ds)
|
void |
NaiveBayes.train(DataSet ds)
|
void |
MixtureClassifier.train(DataSet ds)
|
void |
MixtureClassifier.train(DataSet ds,
int nd,
int iters)
|
Uses of TrainingException in statistics |
---|
Methods in statistics that throw TrainingException | |
---|---|
static MixtureDensity |
Initialization.gMeansClustering(java.util.List<Sample> data,
double alpha,
int maxc,
boolean diagonalCovariances)
Perform a Gaussian-means (G-means) clustering on the given data set. |
static MixtureDensity |
Initialization.hierarchicalGaussianClustering(java.util.List<Sample> data,
int maxc,
boolean diagonalCovariances,
Initialization.DensityRankingMethod rank)
Perform a hierarchical Gaussian clustering: Beginning with only one density, always split the cluster with highest variance in two parts, finding the new means by following the strongest eigen vector. |
static MixtureDensity |
Initialization.kMeansClustering(java.util.List<Sample> data,
int nd,
boolean diagonalCovariances)
Perform a simple k-means clustering on the data. |
|
|||||||||
PREV NEXT | FRAMES NO FRAMES |