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Abstract. Patient-specific models of the heart physiology have become
powerful instruments able to improve the diagnosis and treatment of
cardiac disease. A systemic representation of the whole organ is required
to capture the complex functional and hemodynamical interdependencies
among the anatomical structures. We propose a novel framework for per-
sonalized modeling of the left-side heart that integrates comprehensive
data of the morphology, function and hemodynamics. Patient-specific
fluid dynamics are computed over the entire cardiac cycle using embed-
ded boundary and ghost fluid methods, constrained by the dynamics
of highly detailed anatomical models. Personalized boundary conditions
are determined by estimating cardiac shape and motion from 4D TEE
images through robust discriminative learning methods. Qualitative and
quantitative validation of the computed blood dynamics is performed
against Doppler echocardiography measurements, following an original
methodology. Results showed a high agreement between simulation and
ground truth and a correlation of r = 0.85 (p < 0.0002675). To the best
of our knowledge, this is the first time that computational fluid dynamics
are simulated on a systemic and comprehensive patient-specific model of
the heart and validated against routinely acquired clinical ground truth.

1 Introduction

Cardiovascular disease management is nowadays largely supported by increas-
ingly more accurate, fast and ubiquitous imaging technologies. However, this
rich information is barely exploited in the clinical decision making process. Non-
respondent patients are common in cardiac disease [1], presenting in numerous
cases unexpected adverse events because the therapy was not adapted to that
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specific patient. In fact therapeutical decisions are largely based on results ob-
tained in population-wise studies and are therefore not personalized. Further-
more, the complex interdependency of anatomy, function and hemodynamics
imposes the need of a systematic analysis of the whole organ to accurately as-
sess dysfunction and associated morbidities. Therefore, there is a growing need
for patient-specific models that 1) provide the cardiologist with accurate, quan-
titative, and reproducible biomarkers of the cardiac function 2) give insights and
predict comorbidites within the complex interconnected cardiovascular system
and 3) can predict, beforehand, the outcome of a therapy [2]. These models
would enable and support personalized, preventive and predictive healthcare by
predicting disease progress and therapeutical outcomes.

In the last decades, tremendous efforts have been made to enable computa-
tional fluid dynamics (CFD) in cardiac models in order to integrate into a holistic
view the organ anatomy, dynamics an hemodynamics. Due to the lack of per-
sonalized representations, fluid dynamics equations are often solved on generic
models built from at most one cardiac phase with simplified motion [3]. Although
patient-specific measurements have been increasingly used to enhanced compu-
tational models [4, 5], current simulations are still lacking the accuracy required
in the clinical practice. Recently, detailed anatomical models of the heart dy-
namics have been proposed [6]. Such models, coupled with CFD frameworks [4]
open the way to data-driven patient-specific models of anatomy, dynamics and
hemodynamics.

In this paper we propose a highly detailed patient-specific model of left-
heart anatomy, dynamics and hemodynamics and its validation against clinically
acquired Doppler measurements. The contributions are three-fold: i) The first
model of left heart with fast and robust patient-specific parameter estimation
from four-dimensional transesophageal echocardiography (TEE) (Sec. 2), ii) an
improved patient-specific hemodynamics model, computed by solving a level set
formulation of the Navier-Stokes equations (Sec. 3) and iii) a qualitative and
quantitative validation against clinical Doppler echocardiography (Sec. 4). The
results, reported in Sec. 5, demonstrate the validity of our approach.

2 Patient-Specific Anatomy and Dynamics Computation

We propose a holistic four-dimensional model of the left heart that comprises its
core anatomical structures (Fig. 1): left ventricle (LV), left atrium (LA), aortic
valve (AV), mitral valve (MV) and its papillary muscles (APM and PPM). Given
the physiological complexity of the left heart, we selected a modular and hierar-
chical approach, which facilitates capturing a broad spectrum of morphological
and pathological variations. The model is parameterized as follows:

1. Four time dependent similarity transforms for each anatomical structure
(LV, LA, AV and MV) comprising their global location, orientation and
scale over the cardiac cycle, denoted by B(t)m, m ∈ {LV,LA,AV,MV}.



Fig. 1. Proposed model of anatomy and dynamics. Left: full model of the left heart es-
timated from TEE data. Top right: view of the aortic and mitral valve with volumetric
leaflets. Bottom right: septal view of the left ventricular papillary muscles.

2. 20 trajectories of anatomically defined landmarks ln ∈ R3 (3 commissures, 3
hinges, 3 tips and 2 ostia for the aortic valve, and 3 trigones, 2 commissures,
2 tips and 2 papillary heads for the mitral valve), L(B, t) = {l1, l2, . . . , l20}

3. Nine dense meshes Mq with Kq vertices to represent the LA, LV, aortic
root, three aortic leaflets, two mitral leaflets and the aortic-mitral continuity
Mq(B,L, t) = {v1,v2, . . . ,vKq

}, vi ∈ R3 being the position of the ith vertex,
which are constrained by the previously defined landmarks.

The patient-specific parameters of the valvular apparatus and left ventricle are
estimated from 4D TEE images using a hierarchical discriminative learning al-
gorithm as proposed in [6, 7]. The a posteriori probability p(B,L,M |I) of the
model given the image data I is incrementally modeled within the Marginal
Space Learning (MSL) framework. The similarity transforms B and the anatom-
ical landmarks L are estimated automatically by detectors successively trained
on the marginal spaces using the Probabilistic Boosting Tree (PBT) [8] with
Haar and steerable features. The complex local motion of the surface structures
is estimated with a combination of the aforementioned techniques and speckle
tracking methods [7]. For further details on model estimation the reader is re-
ferred to [6, 7]. The left atrium (LA) and pulmonary veins are commonly only
partially visible in TEE acquisitions, which hampered an accurate automatic
segmentation. Therefore, the LA fitting is performed semi-automatically along
the cardiac cycle, using constraints provided by the mitral annulus and statistical
models of shape and motion obtained from a large CT database [8].

It is important to note that our model is anatomically highly detailed and
considers a number of important aspects for the computation of patient-specific



blood flow. Firstly, valve leaflets are volumetrically modeled by representing
them with both ventricular and arterial / atrial surface (Fig. 1 Top right).
Secondly, the papillary muscles are represented as part of the left ventricu-
lar endocardium, constrained by the papillary heads (Fig. 1 Bottom right).
These first two aspects consider their spatial presence and displacement of blood.
Thirdly, the model includes the longitudinal, radial and circumferential left ven-
tricular motion to capture the full momentum exercised by the endocardial wall
onto the blood [7]. Fourthly, the meshes are uniquely parameterized through the
anatomical landmarks ln. Thereby temporal point correspondence is implicitly
guaranteed, which is a mandatory requirement for computational modeling.

(a) (b) (c)

Fig. 2. Velocity magnitudes of the patient-specific simulated hemodynamics in early-
diastole (a), late-diastole (b), and mid-systole (c)

3 Patient-Specific Hemodynamics Computation

In order to simulate the hemodynamics using a comprehensive heart model like
the one presented in the previous section, the CFD solver must be able to han-
dle the large deformations of the non-manifold heart surface, including multi-
ple topological changes like valve closure. Such constraints pose difficulties for
body-fitted grid methods like the finite element method, requiring extra effort
for frequently re-meshing the whole domain and also adversely impacting the
robustness and accuracy of the linear solver. To address these difficulties, we use
in this work a level-set-based embedded boundary method [4]. The non-manifold
heart polygonal mesh is embedded in a computational box endowed with a regu-
lar grid and the Navier-Stokes equations are solved inside the rectangular domain
using finite difference and finite volume discretizations. The liquid inside the box
and ”outside” the left heart plays the role of the body circulatory system, whose
flow resistance is simulated by imposing no slip boundary conditions on the sides



of the box. The heart polygonal mesh is represented on the regular grid with spa-
tial resolution dx by defining the level set φ(x) = dist(x,mesh)− dx, and using
it appropriately for defining the numerical stencils at the blood/tissue interface.

We solve the 3D Navier-Stokes equation for incompressible flow with viscous
terms. Blood density and dynamic viscosity are set to ρliquid = 1.05 g/cm3 and
µ = 0.003Pa · s, respectively. The velocity of the mesh walls, extrapolated in
space to the grid nodes and interpolated in time between two consecutive mesh
positions, are used to enforce no-slip conditions to the Navier-Stokes solver. We
use the ghost fluid method to extend the velocity in the solid regions, when nec-
essary. The convective solver relies on high-order Courant–Isaacson–Rees (CIR)
techniques, while the viscous terms are treated semi-implicitly as in [9]. An ef-
ficient multi-grid preconditioned conjugate gradient solver is used to solve the
pressure Poisson equation.

In our experiments, the computations were performed on grids with an
isotropic cell resolution of 1mm3 (i.e. dx = 1mm), which is in the same range
as the TEE data resolution. The time step was chosen to obey the Courant-
Friedrichs-Lewy (CFL) condition dt ∗max(u) < dx, which enforces that infor-
mation carried by the blood velocity u does not travel faster than one grid cell
per time step. The result of the computational fluid dynamics simulation is il-
lustrated for a specific patient in Fig. 2. For further details the reader is referred
to [4].

4 Validation Methodology

We introduce a novel methodology for validation of simulated heart hemodynam-
ics with clinically acquired Doppler measurements. Doppler echocardiography is
routinely performed during cardiac exams to determine blood velocities from the
phase shift between emitted and reflected high frequency ultrasound waves [10,
11]. We address both, continuous wave (CW) Doppler and pulse wave (PW)
Doppler, which measure velocities along the probe direction to produce 1D sig-
nals. For a conclusive comparison we reconstruct similar 1D signals from the
simulated 4D CFD velocities.

CW returns the velocities of all blood cells along the probe path. The outer
envelope of the signal corresponds to the maximum velocity. CW is used in
practice to acquire the very high speed of regurgitation flows, however without
providing the spatial location of the measurement. In the 4D patient-specific
computational model, a virtual CW probe path is defined to match the real
position and orientation of the corresponding ground truth Doppler. The 4D
velocities are projected onto the probe direction for the entire cardiac cycle.
Then, for each cardiac phase, the maximum velocity values along the probe path
are registered. Velocities are sampled in 1mm spatial steps along the probe path
and at each location averaged over a small disk of radius 1.5mm, to realistically
match the resolution of the CW protocol (Fig. 3 Top panel).

PW returns the dominant velocity of the blood cells inside a focal region of
interest (ROI) along the probe direction, typically just below the mitral leaflet
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Fig. 3. Validation setup. CW and PW Doppler are computed from the 4D simulation
(right panels) to reproduce the 1D ground truth (left panels).

tips or within the left ventricular outflow tract [10, 11] (Fig. 3 Bottom panel).
PW Doppler is used to measure the blood inflow and outflow across the valves
and is limited in capturing high velocities. In the 4D patient-specific computa-
tional models, a virtual PW probe direction and ROI is defined to match the
real position and orientation of the corresponding ground truth Doppler (Fig. 3
Bottom left). The 4D computed velocities inside the ROI are projected along
the probe direction. The dominant velocity of the blood cells is approximated
by the most frequent velocity found in the ROI, determined automatically using
a histogram. In our experiments, the number of points in the ROI vary between
300 and 700, while 10 bins were used to build the histogram.

While we focused in our experiments on transvalvular blood velocities as rou-
tinely measured during Doppler exams, it is important to note that the technique
is not limited to these particular sites, and is applicable at any location.
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Fig. 4. Doppler acquisitions overlaid with computed curves in a patient with atrial
fibrillation. Note the absence of the A-Wave in the transmitral measurements (bottom
row) and the high velocity peaks in the CW aortic measurements (top right), which
were well captured by the simulation.

5 Results

The performance of the patient-specific anatomy and dynamics computation
was validated on a set of 239 patients with 4D echocardiography acquisitions.
On average the precision was 1.73mm at a speed of 4.8sec per volume for the
valvular model and 2.68mm at a speed of less than 1sec per volume for the left
ventricle [6, 7].

The validation of our patient-specific hemodynamics computation - the main
focus of this paper - was performed against clinical relevant blood flow mea-
surements, routinely acquired using Doppler echocardiography techniques. It is
important to notice that Doppler methods, such as the aortic CW Doppler for
stenosis assessment, are the current gold standard for hemodynamic analysis.
Please also note that the diagnostic value of Doppler measurements is to a large
extent in the peak velocities – as e.g. for assessing the degree of dysfunction – as
well as qualitative observations in particular modes, i.e. the E- and A-waves in
Mitral PW Doppler, describing transmitral flow early and late diastole respec-
tively. Hence the evaluation is focused on these aspects.

The patient population included three randomly selected patients: two of
them suffering from atrial fibrillation whereas the third from severe regurgita-
tions of both, aortic and mitral valves. For each patient, a Doppler exam was
performed six to 12 weeks before surgery, at the beginning of which 4D TEE
data was acquired. A difference in heart rates of 1 to 18% could be observed.
Patient-specific models of anatomy and dynamics were computed form the 4D



TEE images as described in section 2. From the obtained models, boundary
conditions were derived and used to computed patient-specific hemodynamics
as presented in section 3. Using the validation protocol described in section 4,
measured and computed Doppler (PW and CW), for both valves and all pa-
tients, were compared and reported in Table 1. Overall a high agreement could
be observed between the in vivo acquired measurements and computed results
and the correlation among the corresponding values, which was computed using
all values from all patients as reported in Table 1, amounted to r = 0.85 (sig-
nificance p < 0.0002675). A qualitative comparison is provided in Fig. 4, which
displays the ground truth Doppler velocities over time and the computed curves
in one patient with atrial fibrillation. In support of our quantitative compari-
son, the overlay reveals the high level of detail of our computational model. In
particular, the absence of A-wave in the transmitral measurements as specific
for atrial fibrillation was correctly captured by the model - whereas its presence
reflects ventricular filling in late diastole. Moreover, sharp peaks observed in
CW Doppler across aortic valve were reproduced by the simulation, which occur
across the valve orifice just before closure and after opening.

Table 1. Measured ground truth (M) and simulated (S) peak velocities. Patient 1 and
2 had atrial fibrillation, therefore the A-wave was not visible (symbolized by n/a) in
the ground truth, also successfully captured by the simulation.

Patient 1 Patient 2 Patient 3

peak velocity (m/s) S M S M S M

Aortic PW systolic 0.627 0.732 1.01 1.38 0.51 0.59
Aortic CW systolic 0.761 0.843 1.11 1.53 1.035 0.82

Mitral PW diastolic E-Wave 0.78 0.8 0.49 0.48 0.97 0.853
Mitral PW diastolic A-Wave n/a 0.53 0.4 n/a

Mitral CW diastolic 0.96 1.0 0.72 0.8 1.01 1.05

6 Conclusion

This paper presents a framework for systemic and highly detailed modeling of
left heart anatomy, dynamics and hemodynamics from 4D TEE. Fast and ro-
bust estimation of anatomy and dynamics is performed using machine learning
algorithms, while patient-specific hemodynamics is robustly estimated by using
the personalized left heart model as a boundary condition for solving a level-set
based formulation of the Navier-Stokes equations. Our framework was validated
on three diseased patients, where both TEE and Doppler measurements were
available and demonstrated high agreement. To the best of our knowledge our
personalized model captures the most anatomical detail, considering for the first
time papillary muscles and importantly is the first time that a framework for
cardiac fluid mechanics is validated with clinically acquired ground truth data
obtained from routinely employed clinical instrumentation in diseased patients.
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