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Abstract

The number of patients suffering from the glaucoma disease will increase in the
future. A further automation of parts of the diagnostic routine is inevitable to use
limited examination times more efficiently. Optical coherence tomography (OCT)
technology has become a widespread tool for glaucoma diagnosis, and data collections
in the clinics have been built up in recent years that now allow for data mining and
pattern recognition approaches to be applied to the diagnostic challenge. A complete
pattern recognition pipeline to automatically discriminate glaucomatous from normal
eyes with OCT data is proposed, implemented and evaluated. A data collection
of 1024 Spectralis HRA+OCT circular scans around the optic nerve head from 565
subjects build the basis for this work. The data collection is labeled with 4 diagnoses:
453 healthy (H), 179 ocular hypertension (OHT), 168 preperimetric glaucoma (PPG),
and 224 perimetric glaucoma (PG) eyes.

In a first step, 6 retinal layer boundaries are automatically segmented by edge
detection and the minimization of a custom energy functional, which was established
in preceeding work by the author. The segmentation algorithm is evaluated on a
subset consisting of 120 scans. The automatically segmented layer boundaries are
compared to a gold standard (GS) created from manual corrections to the automated
results by 5 observers. The mean absolute difference of the automated segmentation
to the GS for the outer nerve fiber layer boundary is 2.84µm. The other layers
have less or almost no segmentation error. No significant correlation between the
segmentation error and scans of bad quality or glaucomatous eyes could be found for
any layer boundary. The difference of the automated segmentation to the GS is not
much worse than the single observer’s manual correction difference to the GS.

In a second step, the thickness profiles generated by the segmentation are used
in a classification system: In total, 762 features are generated, including novel ratio
and principal component analysis features. “Forward selection and backward elimi-
nation” selects the best performing features with respect to the classwise averaged
classification rate (CR) on the training data. The segmentations of the complete
dataset were manually corrected so that the classification experiments could either
be run on manually corrected or purely automated segmentations. Three classifiers
were compared. The support vector machine classifier (SVM) performed best in
a 10-fold cross-validation and differentiated non-glaucomatous (H and OHT) from
glaucomatous (PPG and PG) eyes with a CR of 0.859 on manually corrected data.
The classification system adapts to the less reliable purely automated segmentations
by choosing features of a more global scale. Training with manually corrected and
testing with purely automated data and vice versa shows that it is of advance to use
manually corrected data for training, no matter what the type of test data is. The
distance of the feature vectors to the SVM decision boundary is used as a basis for a
novel glaucoma probability score based on OCT data, the OCT-GPS.



Zusammenfassung

Eine steigende Anzahl von Glaukompatienten wird es unabdingbar machen Teile
der diagnostischen Routine weiter zu automatisieren. Die optische Kohärenztomo-
graphie (OCT) ist inzwischen ein fester Bestandteil der Glaukomdiagnose gewor-
den und die Kliniken haben Datensammlungen aufgebaut, die Datenbankauswer-
tungen und Mustererkennungsansätze für die diagnostischen Herausforderungen er-
lauben: Augen mit Glaukom sollen anhand von OCT automatisch von gesunden
Augen unterschieden werden. Hierfür wird eine vollständige Mustererkennungskette
vorgeschlagen, implementiert und evaluiert. Die Arbeit basiert auf einem Datensatz
aus 1024 kreisförmigen Scans um den optischen Nervenkopf von 565 Personen, die mit
einem Spectralis HRA+OCT aufgenommen wurden. Die Daten stammen von Augen
mit 4 verschiedenen Diagnosen: 453 gesunde Augen (H), 179 Augen mit erhöhtem
Augeninnendruck (OHT), 168 Augen mit präperimetrischem Glaukom (PPG) und
224 Augen mit perimetrischem Glaukom (PG).

In einem ersten Schritt werden sechs Retinaschichtgrenzen mit Kantendetektion
und der Minimierung eines Energiefunktionals, das in vorrangegangenen Arbeiten
eingeführt wurde, segmentiert. Der Segmentierungsalgorithmus wird mit Hilfe eines
Goldstandards evaluiert, der aus manuellen Korrekturen am automatischen Ergeb-
nis von fünf unabhängigen Beobachtern abgeleitet wurde. Die automatische Seg-
mentierung der äußeren Begrenzung der Nervenfaserschicht weicht im Mittel 2.84µm
vom Goldstandard ab. Die Segmentierungsfehler bei den anderen Schichtgrenzen
sind geringer oder kaum vorhanden. Es wurde keine signifikante Korrelation zwischen
den Segmentierungsfehlern und Scans von schlechter Qualität oder der Glaukomdiag-
nose festgestellt. Das Ergebnis der automatischen Segmentierung unterscheidet sich
vom Goldstandard nicht deutlich mehr als die manuellen Korrekturen der einzelnen
Beobachter von Goldstandard.

In einem zweiten Schritt werden die aus der Segmentierung gewonnenen Reti-
naschichtdickenprofile als Eingabe eines Klassifikationssystems verwendet: Es wer-
den 762 Merkmale generiert, u.a. neuartige Verhältnis- und Hauptachsenmerkmale.
“Alternierende Merkmalshinzufügung und Ausschluss” wählt die besten Merkmale au-
tomatisch aus. Die automatischen Segmentierungen des ganzen Datensatzes wurden
manuell korrigiert, um Klassifikationsexperimente sowohl auf manuell korrigierten,
als auch auf komplett automatisch erzeugten Segmentierungen durchführen zu kön-
nen. Drei Klassifikatoren werden verglichen, wobei die Support Vektor Maschine
(SVM) das beste Ergebnis in einer 10-fachen Kreuzvalidierung liefert. Es werden
Nicht-Glaukom (H und OHT) von Glaukomaugen (PPG und PG) mit einer klassen-
weise gemittelten Klassifikationsrate von 0.859 auf manuell korrigierten Daten un-
terschieden. Das Klassifikationssystem adaptiert sich an die weniger zuverlässigen,
komplett automatischen Segmentierungen, indem aus größeren Regionen berechnete
Merkmale ausgewählt werden. Wenn das Training auf manuell korrigierten Daten
und der Test mit komplett automatisch generierten Daten und umgekehrt durchge-
führt werden, zeigt sich, dass es von Vorteil ist, immer manuell korrigierte Daten zum
Training zu verwenden, unabhängig vom Datentyp der Testdaten. Die Distanz eines
Merkmals zur SVM Entscheidungsgrenze wird abschließend benutzt, um einen neuar-
tigen Glaukomwahrscheinlichkeitsindex für OCT zu konstruieren, den OCT-GPS.
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Chapter 1

Introduction

1.1 Motivation

An estimation of the number of people suffering from the glaucoma disease from the
year 2006 yielded that there were approximately 60.5 million open angle glaucoma
(OAG) and angle closure glaucoma (ACG) patients worldwide in 2010. Of those,
8.4 million were bilaterally blind [Quig 06]. The blindness caused by glaucoma and
the structural damage done is irreversible. However, it is possible to slow down
the progression of the disease [Heij 02, Lesk 03, Lee 05]. Therefore, it is essential to
diagnose glaucoma at an early stage, before severe vision loss has occurred.

There are various forms of glaucoma. It is a chronic disease that cannot be diag-
nosed depending on a single measurement or incidence. Thus, the ophthalmologist
utilizes a variety of modalities together with the anamnesis of the person to iden-
tify the disease. The diagnosing process is time-consuming, due to the variety of
modalities that may be involved, like visual field (VF) test, fundus photography, Hei-
delberg retina tomograph (HRT), and optical coherence tomography (OCT). On the
one hand, a multitude of modalities and complex images, e.g. 3D volume scans of
the retina, make a diagnosis more precise. On the other hand, each modality requires
examination time and time to study its result. The number of glaucoma patients will
increase in the future. The estimation of OAG and ACG patients is 79.6 million in
2020 [Quig 06]. Both challenges, the time demand of modalities involved in a pre-
cise diagnosis as well as the increasing number of patients, may be approached by
automating parts of a diagnostic routine.

Before a person enters the eye clinic, dedicated screening centers can differenti-
ate between patient suspects and healthy people in an efficient manner. For such a
differentiation, only a limited number of diagnostic modalities is necessary and ex-
aminations and diagnoses can be carried out automatically or by trained personnel
to a large extent. When a detailed examination of a patient suspect is carried out
in the clinics, reports may be automatically generated for the ophthalmologist to
break down huge amounts of image data into a few meaningful parameters. Instead
of performing a time demanding manual inspection of the data, the ophthalmologist
only needs to check the automated results.

Automated computerized methods are already in widespread use in eye clinics
today, not only for research purposes, but also in commercial products. OCT sys-
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2 Chapter 1. Introduction

tems like the Zeiss Cirrus (Carl Zeiss Meditec AG, Jena, Germany) or the Heidelberg
Engineering Spectralis (Heidelberg Engineering, Heidelberg, Germany) provide seg-
mentations of the retina and the retinal nerve fiber layer with the possibility to
calculate mean thickness values or compare the results with a normative database.
One step further, the HRT (Heidelberg Engineering, Heidelberg, Germany) uses ma-
chine learning methods to calculate a glaucoma probability score (GPS) based on the
imaged topography of the retina [Swin 00].

In this work, an automated glaucoma score similar to the GPS is proposed for
circular scan OCT data. The discrimination between glaucoma patients and normal
subjects is not performed directly on the OCT images, but on thickness profiles of
retinal layers. Therefore, the boundaries of these layers have to be segmented before-
hand. The first part of this thesis presents and evaluates an approach for segmenting
retinal layers on circular scan OCT data that is applicable on scans of both normal
and glaucomatous eyes. In the second part of the thesis, the thickness profiles of mul-
tiple retinal layers form the data on which a classification system for the glaucoma
disease is built upon. Feature selection, a typical data mining method [Fayy 96], is
used to automatically detect the relevant information within of the data. Classifi-
cation experiments are constructed, and both the results and the selected features
are presented. Besides using manually corrected segmentations, the possibilities for a
completely automated screening system are investigated by performing a classification
on the untouched automated segmentation results that include possible segmentation
errors. Finally, a method for transforming classification results into a glaucoma score
is presented.

1.2 OCT in ophthalmology
OCT was invented by Huang et al. in 1991 [Huan 91]. It is based on the principles
of a Michelson interferometer and is the optical counterpart to ultrasound B mode.
Figure 1.1 shows a schemativ view of a time domain OCT (TD-OCT) system. Short
coherent light is split at a half-translucent mirror into a measurement and a reference
arm. A moveable mirror reflects the light in the reference arm. In the measurement
arm, the light is reflected and backscattered inside the object. The beams recombine
at the half-translucent mirror. Due to the interference of the combined beams, the
signal measured at the detector oscillates when the reference mirror is moved within
the coherence length of the light. The intensity of the light coming from the object can
be calculated from these oscillations. A single depth profile of the object is acquired
by moving the reference mirror over the desired depth range. The beam may be
scanned over the object in transverse direction for 2D or 3D imaging. In OCT,
the transverse resolution is independent from the axial resolution. While the axial
resolution depends on the wavelength and spectrum of the light source, the transverse
resolution is determined by the focusing properties of the light beam [Ferc 03]. A more
detailed explanation of OCT technology can be found in [Ferc 03, Fuji 03, Wojt 10].

Since the invention of the OCT technology, ophthalmology has been its main
application area. In the original OCT paper, image examples of a human retina ex
vitro are shown [Huan 91]. Soon in-vivo imaging was possible [Ferc 93]. Early research
and commercial TD-OCT systems image up to a few hundred depth profiles, called A-
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Figure 1.1: Schematic structure of a time domain OCT system. The short coherent
light emitted at the light source is split at a half-translucent mirror into a reference
and a measurement arm. The light reflected in both arms is recombined, and the
intensity of the light reflected and backscattered in the object is measured at the
detector indirectly through interference. Light paths in this drawing are schematic.
The light reflected may actually overlap the incident light.

Scans, per second. A 2D OCT image is composed of multiple A-Scans. Depending on
the system, this may be several hundred to well above a thousand A-Scans per image.
With the slow scanning rates of the early systems, the acquisition of a 2D OCT image
took up to a few seconds. As the eye constantly moves due to heartbeat, respiration,
slow drifts, and fast saccades distortions due to motion on TD-OCT images were
a common unwanted imaging artifact. The clinical acceptance of OCT-systems was
boosted by the commercial availability of frequency domain OCT (FD-OCT) systems.
Contrary to TD-OCT, the mirror that moved in TD-OCT systems is now in a fixed
position, and depth information is acquired by analyzing the spectrum of the back
reflected light from the object [Ferc 95, Haus 98]. Today, about 20000 A-Scans/s are
common in commercial systems, while research OCT systems reach up to 300000 A-
Scans/s [Pots 08]. Imaging in 2D became the matter of a fraction of a second and 3D
OCT volumes may be acquired. Motion artifacts are negligible for 2D images with
fast FD-OCT acquisitions.

The part of the eye that is commonly imaged with OCT is the retina. As men-
tioned before, in the early days of the OCT technology imaging was limited to a 2D
space and up to now, the two most common scan patterns used in the clinics are 2D
scans, namely a linear scan through the macula or a circular scan around the optic
nerve head (ONH). An example of a circular scan around the optic nerve head is
shown in Figure 1.2 a) and c). The scan path is drawn on the respective scanning
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(a) (b)

(c) (d)

Figure 1.2: Example circular B-Scans imaged with a Heidelberg Engineering Spec-
tralis HRA+OCT (a) OCT B-Scan of the right eye of a normal subject. (b) Scanning
Laser Ophthalmoscope (SLO) image captured during the same scanning process. The
circular scan path position is marked. The gray value of the scan position path does
not have any relevance. The scan begins and ends at the arrow tip. The positions
along the scan path on the SLO image correspond to the columns of the OCT im-
age from left to right. (c) OCT B-Scan of the left eye of a glaucoma patient. (d)
Corresponding SLO image for scan (c).

laser ophthalmoscope (SLO) image in Figure 1.2 b) and d). The SLO technique de-
livers images similar to fundus photography. The SLO images are acquired during
the same scanning process as the OCT image. The layered structure of the retina can
be clearly observed on the OCT scans in Figure 1.2 a) and c). The vitreous humor
(VH) lays on top of the retina as a black, non-scattering region. The uppermost layer
visible is the retinal nerve fiber layer (RNFL), which is separated from the VH by
the inner limiting membrane (ILM). Then, from the inner to the outer retina, follows
the ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL),
outer plexiform layer (OPL), outer nuclear layer (ONL), external limiting membrane
(ELM), inner photoreceptors (IPR), outer photoreceptors (OPR), and finally the reti-
nal pigment epithelium (RPE). Blood vessels cast black shadows on to the imaged
tissue below, as the flowing blood hinders a deeper penetration and backscattering of
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Figure 1.3: Denominations of the retinal layers in a circular OCT scan. Abbrevi-
ations: Vitreous humor (VH), inner limiting membrane (ILM), retinal nerve fiber
layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear
layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), external lim-
iting membrane (ELM), inner photoreceptors (IPR), outer photoreceptors (OPR),
retinal pigment epithelium (RPE). The thickness of the ILM is below the resolution
capabilities of the Spectralis OCT system that was used to acquire this image. The
contrast of the OCT image was adjusted for better layer visibility.

light. In Figure 1.3, a section of the OCT scan of Figure 1.2 a) is annotated with the
layer names. The influence of measurements on these layers for glaucoma diagnosis
is briefly touched in the next section.

Volume imaging of the retina is not as standardized as the circular scan pattern.
Possibilities include scanning the macula region and the ONH region. Research sys-
tems allow wide angle scans of a large field of the retina, including both the macula
and ONH. Figure 1.4 a) shows an example slice out of a volume scan of the ONH. The
complete scan area and the position of the slice is again marked on the corresponding
SLO image in Figure 1.4 b). Not only the retina, but also the anterior parts of the eye
may be imaged with OCT [Izat 94, Leun 05, Kale 07], e.g. the cornea, iris, anterior
and posterior chamber, and lens. Besides its application in ophthalmology, OCT is
now used in other medical fields like gastroenterology and dermatology. An overview
of the usage of OCT in medicine is given by [Ferc 10]. Applications of OCT outside
the biomedical field are presented in [Stif 07].
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(a) (b)

Figure 1.4: Example B-Scan from an OCT volume imaged with a Heidelberg En-
gineering Spectralis HRA+OCT (a) OCT B-Scan through the optic nerve head of
the left eye of a normal subject. (b) Scanning Laser Ophthalmoscope (SLO) image
captured during the same scanning process. The scan path of the B-Scan in (a)
marked in white. The positions along the scan path on the SLO image correspond to
the columns of the OCT image. The complete scan area of the OCT volume, which
consists of 97 B-Scans parallel to the one shown, is marked in grey.

1.3 Glaucoma diagnosis with OCT

The chronic glaucoma disease appears in various forms, like OAG and ACG. But they
all have common characteristics that allow for a diagnosis. Most importantly, defects
in the visual field of the patients appear. But by the time these defects are noticed
by the patient or even by visual field measurements in a clinic, structural damage has
already occured [Somm91, Tuul 93, Woll 05]. However, recent studies propose a linear
model of the relationship between VF loss and RNFL thinning [Hood 07, Horn 09].
Which one is detected earlier depends on the standard deviations of the tests and
its conditions. The structural damage is a result of the death of retinal ganglion
cells (RGC) and their axons. This leads to an excavation of the optic disc, an optic
nerve degeneration and a thinning of the RNFL. These effects can be observed on
(stereo) fundus photographs. A thinning of the optical rim, and thus a change in the
cup-to-disc ratio, can be seen in Figure 1.5 b) compared to the fundus photograph of
a normal subject in Figure 1.5 a). Fundus photographs provide a detailed 2D view
on top of the retina, with additional topography information available when stereo
fundus photographs are acquired. The HRT acquires the topography information in
a single acquisition. Topography information allows for a better diagnosis based on
ONH information, as the steepening of the ONH rim, the volume of the ONH cup,
and the cup-to-disc ratio can be measured more precisely compared to a pure 2D
image.
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(a) (b)

Figure 1.5: Example fundus photographs from a publicly available database of high
resolution fundus photographs [Odst 13]. (a) Normal subject. (b) Glaucoma patient.

With OCT, the effect of the dying RGC and their axons, the nerve fibers, can be
directly observed by the visualization of the thickness of the RNFL and macula, the
point on the retina which allows for the sharpest sight and is not covered by nerve
fibers. These two measurements, RNFL and macula thickness, have been two of the
most important glaucoma indicators from their first reports [Gued 03, Woll 05] until
today. It was shown that the mean RNFL thickness correlated better with glaucoma
than macula thickness [Gued 03]. This was verified in [Na 11]. The mean RNFL
thickness was measured on the standard 3.46mm diameter circular scan around the
ONH. The circular scan pattern has the advantage that all nerve fiber bundles going
from the retina trough the ONH to the brain pass trough the scanning circle exactly
once. In addition, the mean RNFL measure on the standard circular scan is not or
only minimally affected by the size of the optic disc [Oddo 11, Huan 12]. Figure 1.2
shows examples of a circular scan of a normal subject and a glaucoma patient. The
RNFL of the glaucoma patient is thin and has also disappeared in some areas.

The parameters computed out of RNFL thickness measurements were refined
over time, e.g. by computing the mean in the quadrants around the ONH [Polo 08,
Leun 09]. In [Vizz 09], it is shown that OCT may detect very localized RNFL de-
fects. Complete 2D RNFL maps generated out of OCT volumes around the ONH
show a promising diagnostic performance that may be superior to the traditional
measurements on circular scans [Leun 10a, Leun 10b, Kana 13, Maya 13, Shin 15]. It
is also noted that the progression of the RNFL defects does not affect all quadrants
in the same way, but rather starts locally, before expanding. A detailed overview of
OCT and other modalities as tools for glaucoma diagnosis is given in [Shar 08] and
[Koto 14].
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Figure 1.6: The standard pattern recognition pipeline and its implementation in this
work. The data used are optic nerve head (ONH) centered circular OCT scans. The
preprocessing step is a retinal layer segmentation and the normalization of the de-
rived thickness measurements. After preprocessing, established methods are used to
classify the data for the presence of glaucoma: Features are computed out of the
thickness profiles, “Forward selection and backward elimination” is used as a fea-
ture selection method and three exemplary classifiers, namely naïve Bayes, k-nearest
neighbor (kNN) and support vector machine (SVM) are tested for their discrimina-
tive ability on the features. The retinal layer segmentation is detailed in Chapter 3,
and the rest of the pattern recognition pipeline in Chapter 4.

1.4 Contribution of this work

A complete pattern recognition pipeline is proposed, implemented and evaluated.
The standard pattern recognition pipeline and its mapping to the contents of this
work is shown in Figure 1.6. The classification task is to discriminate glaucoma
patients from normal subjects. The data used are ONH centered circular OCT scans.
The data preprocessing involves segmenting the retinal layers from the OCT scans
to obtain thickness profiles of multiple layers, which then are optionally normalized.
From the retinal layer thickness profiles numerous features are generated. Widely
accepted algorithms are used for the feature selection and classification, i.e. “Forward
selection and backward elimination” for feature selection and three basic classifiers:
Naïve Bayes, k-nearest neighbor (kNN) and support vector machines (SVM). Each
of the pipeline steps may be further improved at a later stage, e.g. by utilizing the
newest trends in retinal layer segmentation or by testing more elaborated classifiers.
The localization of the presented methods in the field of current research and future
improvements are given in the respective State of the art and Outlook sections. The
utilization of algorithms at the cutting edge of research is not the focus in this work.

The main scientific contribution of the work is to shed a light on how OCT
data from daily clinical practice influences automated methods. OCT scans in daily
clinical practice sometimes lack the strict quality criteria that are commonly applied
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to data in segmentation evaluations or clinical trials. It is common sense that all
automated segmentation methods will eventually fail to provide perfect results, be
it due to low quality or an unexpected content of the images, e.g. the presence of a
disease that was not included in the evaluation data set. The failures of automated
segmentation methods might be corrected manually, which takes less effort than
complete manual segmentations. Most of the published work on glaucoma detection
from OCT data is based on the parameters the proprietary manufacturer software
delivers. These parameters are either not manually corrected or the machines even
lack the possibility for a manual correction, i.e. clinical trials do most often only use
purely automated segmentation results. To the best of out knowledge, we present the
first work that evaluates how a manual correction of layer segmentations influences
the feature selection and the glaucoma classification scores.

In addition to this main contribution, there are other novelties:

• As mentioned before we base this work on a data collection that should represent
daily clinical practice. No OCT scan was excluded in this work due to quality
issues or other diseases present, as it is common in other works on retinal layer
segmentation [Lang 13, Cara 14] and especially glaucoma classification [Huan 05,
Bask 12, Garc 12, Mwan 13, Belg 15]. It should be noted that the scan quality
issue has come into focus in recent years. A retinal layer segmentation was
developed with the robustness against scan quality by Dufour et al. [Dufo 13].
However, they did not include glaucomatous cases in their evaluation.

• To the author’s best knowledge, no work published in the field of retinal layer
segmentation has so far evaluated a multi-layer segmentation algorithm not
only for global measurements of segmentation errors, but also detailed where
the errors occurred most likely. This is an important factor for the influence
of segmentation errors on glaucoma detection. Such a local evaluation for the
RNFL only was presented in a preceding work by the author in [Maye 10] and
was, for example, taken up in [Kaba 15]. [Ehne 14] did at least present measures
in 9 local fields. All other works only evaluate for global measurements like a
summed absolute difference to a gold standard.

• The segmentation process is designed such that it takes into account complete
losses of the retinal nerve fiber layer which is essential for severe glaucomatous
cases. [Srin 14a] incorporated a global and local missing layer detection, while
this was only done for mice OCT data. A level set based segmentation approach
with sub-pixel accuracy was developed by [Cara 14] that should theoretically be
able to deal with missing layers. However, the authors note themselves that the
method was only evaluated on normal appearing eyes and the application to
pathology is yet to study.

• A data mining approach from the retinal layer segmentations is proposed. For
each of 6 segmented layer groups and the blood vessel positions, multiple fea-
tures are computed and an automated feature selection chooses the most dis-
criminative ones. Up to now, only the complete retina, RNFL, GCL+IPL
and ONH features were utilized from OCT data to automatically classify for
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glaucoma as authors rely on parameters from the manufacturer built-in seg-
mentation algorithms [Burg 05, Bask 12, Garc 12, Mwan 13, Yiu 14].

• Principal component analysis (PCA) features are proposed to be computed from
the thickness profiles in addition to the traditional minimum, maximum and
mean features. The PCA features were first presented in an abstract and poster
by the author on a conference [Maye 09], but missed a detailed description and
a database large enough for a resilient evaluation was still to follow.

• An age normalization for the thickness profiles inspired by Bendschneider et
al. [Bend 10] is proposed. The normalization in this preceding work is only
calculated for the RNFL and not within a classification framework.

• A novel glaucoma probability score based on circular scan OCT data, a retinal
layer segmentation, and a classification system is proposed.

1.5 Structure of this work
The properties of the OCT data we utilize are outlined in Chapter 2. The diagnose
process on the patients’ eyes is briefly summarized. The steps in creating two subsets
out of the full OCT scan data collection used in the segmentation evaluation and
glaucoma classification are detailed with respect to inclusion and exclusion criteria,
as well as scan quality. The two subsets are used for the automated segmentation
evaluation and the glaucoma classification evaluation respectively.

The main body of this work is split in two parts, as sketched in Figure 1.6.
Chapter 3 describes the automated retinal layer segmentation algorithm. This algo-
rithm is an extension of former work by the author [Maye 10] and is first put into
the context of the current state-of-the-art research in Section 3.1. The segmentation
method itself is described in Section 3.2, and the evaluation process in Section 3.3.
We decided to let the automated segmentation results be corrected by multiple ob-
servers and constructed a gold standard from these manual corrections. The mea-
sures and results for the inter-observer evaluation are presented and discussed in
Section 3.4. For the classification evaluation later in this work, only a manual cor-
rection by the author could be utilized due to practical reasons. The relation of
this manual correction to the other observers and the gold standard is described.
Section 3.5 presents and discusses the measures and results for the automated seg-
mentation method. The chapter on the automated segmentation method is closed by
an outlook in Section 3.6 on how the presented algorithm can be extended to volume
scans and how the ideas of the method can be combined with recently published
approaches to layer segmentation.

The following steps of the pattern recognition pipeline, namely the layer thickness
profile normalization, the feature extraction, feature selection and classification (see
Figure 1.6) are the content of Chapter 4. The state-of-the-art review in Section 4.1
does not limit itself to glaucoma classification from OCT images, but also takes a
look at similar fields, e.g. classifying glaucoma from other measures and imaging
techniques related to the eye, as well as the usage of OCT data for an automatic
identification of diseases besides glaucoma. In Section 4.2 two approaches to layer
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thickness normalization, i.e. age and magnification normalization, are presented. The
subsequent Section 4.3, describes the features computed from the layer thicknesses.
As the feature selection and the classifiers used are common and widely accepted
methods, they are only briefly summarized in Section 4.4. The results of the classi-
fication experiments are presented in Section 4.5. Not all possible combinations of
classification challenges, thickness normalization methods, classifiers and automated
or manually corrected data have informational value. Therefore we first outline how
we broke down the parameter matrix by keeping always all parameters except one
fixed, and how we ordered the experiments such that a reliable statement can be
made. First, the possible classification challenges derived from the diagnoses in our
dataset are defined and judged for relevance in Section 4.5.2. Then the influence of
the thickness normalization features is evaluated in Section 4.5.3. The best perform-
ing classifier is searched for in Section 4.5.4. Finally, the results and changes in the
feature selection when switching from manual corrected results to purely automated
segmentations are investigated in Section 4.5.5. With the results of the classifica-
tion experiments in mind, we propose a glaucoma score for circular scan OCT data
in Section 4.6. Similar to Chapter 3 on segmentation we conclude the chapter on
classification with an outlook to the adaptation of our method to volume data and
possible future enhancements.

The work is concluded with a summary of the automated layer segmentation
and the glaucoma classification tasks presented and their implications on the field of
research in Chapter 5.
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Chapter 2

Optical coherence tomography data

This chapter describes the data that is used for the main body of this work. First, in
Section 2.1 properties and naming conventions regarding image dimensions, coordi-
nates and anatomical structures are clarified. Second, the construction of the datasets
used for evaluating the methods proposed is presented in Section 2.2. The properties
of the datasets, especially in differentiation to former works published in the field of
OCT retinal layer segmentation and glaucoma classification, are emphasized.

2.1 Properties, names and conventions
The OCT system used for scan acquisition is a Spectralis HRA+OCT (Heidelberg
Engineering, Heidelberg, Germany). This OCT device is referred to as Spectralis for
the remainder of this work. As mentioned in Section 1.2, A-Scan and depth profile are
used interchangeably. OCT image and 2D frame are also used as synonyms, referring
to scans with a circular scan pattern. A B-Scan denotes either a circular scan or a
line scan of an OCT volume. OCT volumes are also be referred to as 3D data.

The circular scans are centered at the optic disk and have a diameter of 3.46mm.
All consist of 768 A-Scans. The volume examples shown are centered at the optic
nerve head and have a varying number of A-Scans per B-Scan (384 to 512) and a
varying number of B-Scans (49 to 97). Each A-Scan consists of 496 pixels. The axial
resolution of the Spectralis is 7µm in tissue, although the pixel spacing is 3.87µm.
The images are thus oversampled in the axial direction. The raw data was exported
using the VOL file format of Heidelberg Engineering. The pixel intensity value range
in the VOL files is [0; 1] saved as 32-bit floating point values. All computations are
performed in this data format or with 64-bit floating point values. Unless stated
otherwise, the intensity values of the VOL file are double square-rooted for display
as proposed by Heidelberg Engineering.

13
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(a) (b)

Figure 2.1: Example circular B-Scan of a left eye with coordinate system denom-
inations. Right eye denominations and scan pattern are equivalent and follow the
common rules for the mapping between left and right eye. (a) OCT B-Scan. The
axial direction is denominated by Z. The transversal direction is denominated by
R. (b) SLO image captured by the Spectralis HRA+OCT during the same scan-
ning process. The circular scan pattern position and its direction corresponding to
the R-direction in the images is marked. The quadrant borders on the SLO image
scan position and on the OCT scan are shown with yellow lines. The quadrants are:
Temporal (T), Superior (S), Nasal (N), Inferior (I).

The axial direction of B-Scans is Z. To simplify formulas, the transversal direction
in a circular scan, i.e. the position of an A-Scan in the resulting image, is denominated
by R. The transversal directions in a volume areX and Y . The Z-direction, as well as
the Y and R-directions have their origins in the upper left corner of the corresponding
images. Figure 2.1 illustrates these notations on a circular scan. The rough location
of landmarks on OCT scans is commonly given in quadrants: Temporal (T), Superior
(S), Nasal (N), and Inferior (I) quadrant.

All abbreviations and symbols are summarized in Table A.1 and Table A.2.

2.2 Datasets
The data utilized in this work is derived from the “Erlangen Glaucoma Registry” and
reflects data from daily clinical practice. The subjects included visit the Erlangen
glaucoma service once a year. The inclusion/exclusion criteria and the type of exam-
inations are defined in a protocol that was approved by the local ethics committee.
The study is registered at www.clinicaltrials.gov (NCT00494923) and it followed the
tenets of the declaration of Helsinki for research involving human subjects. Informed
consent was obtained from all participants in the study.
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(a)

(b)

Figure 2.2: Examples of B-Scans excluded from the dataset. (a) Retina not completely
visible in scan region. (b) Heavy averaging errors that do not allow differentiation of
layers by a human observer.

The original dataset consists of 1065 scans from 577 patients. Each eye is included
only once at most. After visual inspection 18 images where excluded from the dataset
for the following reasons:

• Retina cut off. See example Figure 2.2 a).

• Severe averaging artifacts (even a human observer cannot judge layer boundaries
from experience). See example Figure 2.2 b).

Images are explicitly not excluded for following reasons:

• Mild averaging errors that may appear at the left and right borders of a circular
OCT scan. See example Figure 2.3 a).

• Low image quality. Even images with complete sections that do not show any
structure are included in the dataset. See example Figure 2.3 b).

• Scans of eyes with an obvious disease besides glaucoma. See example Figure
2.3 c).

• Algorithm failures. If the segmentation algorithm fails completely (e.g. due
to the reasons above), the image was not excluded from the dataset (as it is
practiced in other works [Ishi 05, Tan 09]).

After the exclusion of images with extremely severe scan errors 1046 images from
575 patients remained.

The subjects were diagnosed by medical experts based on an ophthalmic exam-
ination using slit lamp inspection, applanation tonometry, funduscopy, gonioscopy,
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(a)

(b)

(c)

Figure 2.3: Examples of B-Scans included in the dataset. The scans exemplify the
broad quality and variance in the dataset. (a) Mild averaging errors from a ocular
hypertension patient that still allow differentiation of layers by a human observer (HE
quality: 19.82dB, Zero quality: 0.67). The averaging errors are mainly located in the
temporal quadrant. (b) Very low quality scan from a preperimetric glaucoma patient
(HE quality: 19.25dB , Zero quality: 0.62). (c) Besides perimetric glaucoma, the
scan also shows signs of an other disease (HE quality: 27.71dB, Zero quality: 0.69).

perimetry and papillometry. A 24-hours intraocular pressure profile with 6 determi-
nations was also obtained. A detailed review of the used diagnostic routine can be
found in Baleanu et al. [Bale 09] and Horn et al. [Horn 09] and is not within the scope
of this work. The dataset contains the following four diagnoses defined in [Horn 11]:

• Healthy subjects (H): Findings in slit lamp inspection, tonometry without
medication, and funduscopy were in the normal range. White-on-white perime-
try was classified as normal. Optic discs were inspected and classified as normal.

• Ocular hypertension (OHT): Patients of this group had intraocular pressures
above 22 mm Hg upon repeated applanation tonometry measurements. All
OHT patients had normal white-on-white perimetry and normal appearing optic
discs.

• Preperimetric glaucoma patients (PPG): Patients showed glaucomatous
abnormalities of the optic discs (diffuse or localized loss of neuroretinal rim).
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OS/OD N OHT PPG PG U
H 192 1 4 0 21
OHT 0 68 9 8 4
PPG 4 9 43 14 12
PG 0 8 20 79 11
U 39 4 10 5 10

Table 2.1: Diagnosis left-eye and right-eye distribution among the complete dataset
with scan failures already excluded. Rows: Left-eye diagnosis. Columns: Right-
eye diagnosis. The diagnosis groups are Healthy (H), ocular hypertension (OHT),
preperimetric glaucoma (PPG), perimetric glaucoma (PG) and unknown diagnosis
or scan missing (U).

Computerized visual field examinations with white-on-white perimetry were
normal.

• Perimetric glaucoma patients (PG): The patients of this group had glau-
comatous optic disc damage and non-normal white-on-white perimetry.

Unfortunately, for some scans in the dataset diagnoses or age information is un-
clear or missing. No sex information was available for the subjects. Some are only
included with one eye, some with both. The diagnosis in between the eyes may differ,
as is reflected in Table 2.1. The table shows the left eye (OS) against the right eye
(OD) diagnosis.

Scans without age information or diagnosis were excluded. The dataset of valid
sets, e.g. with diagnosis and age, therefore consists of 1024 scans from 565 patients.
This is the dataset used for the classification experiments (see Chapter 4) and is
named classification dataset within this work. The number of scans for each of the
four diagnoses and the age statistics for this dataset are shown in Table 2.2. The
healthy group consists of 453 scans, the ocular hypertension group of 179 scans,
the preperimetric glaucoma group of 168 scans and the perimetric glaucoma group
of 224 scans. The mean age of the subjects increases in the order of the groups
mentioned. The overall mean age is 54.98 years.

As mentioned before, no scan was excluded for low quality if no severe artifacts
were present that would prevent the examination from even a human expert. The
dataset thus consists of scans of varying quality. We intend to refer to the scan quality
in our segmentation evaluation (see Section 3.4 and 3.5), therefore a quantification
of the quality of a scan is desired. The author proposed such a quality measure in
a former work [Maye 10] (Zero quality). During the period of time the subject scans
were taken Heidelberg Engineering introduced a quality measure for its Spectralis
data. For 820 scans of the classification dataset, this Heidelberg Engineering quality
measure (HE quality) is available. The relationship between the two quality mea-
surements is as follows: In Figure 2.4 the distribution of the two measures among the
820 scans of which the HE quality was available is shown. The value range differs
and the distribution is not completely linearly related. The correlation coefficient in
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Group #Scans Age
All 1024 54.98 ± 14.38
H 453 49.48 ± 15.03
OHT 179 55.22 ± 12.65
PPG 168 59.29 ± 10.87
PG 224 62.24 ± 11.24

Table 2.2: Classification dataset statistics. The number of scans for the diagnose
and the mean and standard deviation of the respective subjects are shown. The
calculation of the mean and standard deviation of the age was performed on a scan
basis. If a subject has differing diagnosis for the left and right eye it was included in
both of the respective groups.

between the two measures on the 820 scans is 0.52 (p < 0.001). By visual inspection
both measures relate fairly well to the perceived scan quality.

From the classification dataset a subset was created for the evaluation of the au-
tomated segmentation algorithm presented in this work. The reason for creating a
subset is simple: Manual inspection and a detailed correction of automated segmen-
tation results is time-demanding. More than one hour is necessary for correcting
20 B-Scans. As multiple experienced observers should perform the task, a manual
correction of the complete classification dataset was not possible. Therefore, a subset
called segmentation evaluation dataset was created following these rules:

• 30 scans were selected from each diagnosis group, i.e. 120 scans in total. This
tradeoff between evaluation database size and observer work time was reason-
able. 120 scans is a database size comparable to other works published in the
field (see Tables B.1 and following).

• 15 left eyes and 15 right eyes are contained in each diagnosis group.

• From one subject only one eye was included.

• HE quality measure is available for each included scan.

This set was created from a random permutation of the full classification dataset.
Scans were added to the segmentation evaluation dataset if one of the above rules
was not violated, and until all groups had 30 images. After a final check for the
conditions, this dataset was stored and not modified further. The selection was
completely random and no image was included or excluded for quality or algorithm
failure reasons. The statistics of the segmentation evaluation dataset are summarized
in Table 2.3. In addition to the mean and standard deviation of the age, the mean
and standard deviations of the HE and Zero quality measures are shown.

The mean of the quality measures for each group always lays within the standard
deviation around the mean of all the other groups. To define a separation boundary
between low and high quality scans, the median of the measures is taken. This median
is 0.734 for the Zero quality and 22.79dB for the HE quality. It is of interest whether
the diagnosis of the subject correlates to the quality measure, e.g. whether the age
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(a) (b)

Figure 2.4: Comparison of the distribution of two quality measures, the Zero quality
measure as proposed in [Maye 10] and the built-in quality measure of the Heidelberg
Engineering Spectralis (HE quality, in [dB]). The histograms were computed from
the 820 scans from the classification dataset were the HE quality was available. For
both measures, the relationship “higher value is higher quality” holds. The correlation
between the two measures on the 820 scans is 0.52 (p < 0.001).

and pathology of glaucoma patients influences the scanning process such that a lower
quality scan can be expected. The PPG and PG groups together form a glaucoma
(G) diagnosis group. Both the low quality (quality measure is below or equal to the
median quality) and glaucoma group have 60 subjects. The correlation of a subject
belonging to the glaucoma group and the subject having a low quality scan gives a
hint to the independence of the two properties of a scan. The correlation of the HE
low quality scans to the glaucoma group is −0.03 and the correlation of the Zero low
quality scans to the glaucoma group is −0.07. Both measures are thus nearly linearly
independent from the glaucoma diagnosis. This reflects the result in the previous
work [Maye 10]. For the remainder of the work we focus on one quality measure. As
the quantitative statistics and subjective visual inspection do not favor one measure,

Group #Scans Age HE Quality Zero Quality
All 120 56.75 ± 13.15 23.67 ± 5.08 0.741 ± 0.063
H 30 47.76 ± 14.81 25.12 ± 5.88 0.745 ± 0.066
OHT 30 57.83 ± 11.76 23.69 ± 4.66 0.731 ± 0.052
PPG 30 59.67 ± 10.00 22.49 ± 5.56 0.737 ± 0.072
PG 30 61.74 ± 11.52 23.38 ± 3.85 0.750 ± 0.061

Table 2.3: Segmentation evaluation dataset statistics. The number of scans for the
diagnoses and the mean and standard deviation of the respective subjects are shown.
In addition, the mean and standard deviation of two quality measures are given: The
quality measurement built into the Heidelberg Engineering Spectralis (HE Quality)
and the quality measurement defined in [Maye 10] (Zero Quality).
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the HE quality is selected. It does not require additional computations and is already
included in the scan data, and therefore more easy to access in daily clinical practice.

In addition to the circular scan database, 10 volume scans were available that were
centered on the ONH but have differing scan areas and B-Scan numbers. 3 scans of
healthy subjects and 7 scans glaucoma patients were available. For each subject only
one eye was scanned. An example scan of a healthy eye is shown in Figure 1.4.

Finally, let us answer the question how the properties of the two datasets compare
to other works published: While the majority of recently published works on retinal
layer segmentation is aimed at segmenting volume data [Anto 13, Cara 14, Chiu 15]
the research on finding suitable methods for circular scan segmentation is still ongoing
[Golz 11, Kaba 15]. Almost every work published does not consider the quality of the
data or explicitly excludes bad quality scans from the evaluation dataset [Ishi 05,
Tan 09]. Varying image quality is considered in [Somf 07, Dufo 13, Chiu 15]. The only
other method known to the author that does not exclude bad quality images and
has glaucomatous scans in its evaluation is [Rath 14]. The authors suggest that the
increased error rate of their segmentation in progressed glaucomatous eyes relates to
their use of a shape model and less scan quality, but do not evaluate the influence
of the quality explicitly. The segmentation evaluation database we utilize allows
a differentiation of the influence of bad quality and the glaucoma disease on the
segmentation result.

The first works published on glaucoma classification from OCT data could only
use datasets with samples in the number of hundreds due to the novelty of the OCT
machine in eye clinics and the resulting the lack of data [Burg 05, Huan 05]. The
same holds for the preliminary work by the author regarding the glaucoma classi-
fication topic from OCT data published at a conference [Maye 09]. Modalities that
are of common use in eye clinics for a longer period of time, e.g. visual field test,
allow classification databases in the number of thousands [Wrob 09, Gold 05]. The
only OCT image database for automated glaucoma detection comparable in size to
ours was used in [Bask 12]. They excluded bad quality scans. Garcia-Martin et. al
[Garc 12] also reject bad quality scans with a HE quality index below 25db in their
work on multiple sclerosis (MS) detection, but explicitly mention in their discussion
that daily clinical practice does not always allow good quality scans. Our classifica-
tion database reflects data from daily clinical practice. In particular, scans with a
HE quality index below 20dB are included, which is the manufacturer’s suggestion
for scan acceptance [Belg 15], but may not be reached for all, especially elderly and
glaucomatous, patients.



Chapter 3

Retinal layer segmentation

The glaucoma classification approach of this work is based on the retinal layer thick-
ness measurements obtained from the positions of the boundaries in between retinal
layers. These boundaries are detected by an automated retinal layer segmentation
algorithm and optionally corrected for segmentation errors afterwards. This chapter
presents the retinal layer segmentation algorithm and quantifies possible segmenta-
tion errors in an evaluation.

The segmentation algorithm is an extension of the work published in [Maye 10].
In this preceding work, only the RPE and the RNFL boundaries were detected. The
present form of the algorithm detects 6 retinal layer boundaries. This change is
not only an addition to the algorithm, but also affects the detection of the 3 layer
boundaries from [Maye 10]. Parts of the algorithm description in Section 3.2 are taken
from the former publication where no change has been made, others are supplemented
or altered. The inner layer detection is new and has only been presented in the form
of an abstract and poster at a conference [Maye 11]. The conference presentation
aimed at volume, not circular scan segmentation. We will refer to that work once
again in the outlook of this chapter in Section 3.6. The State of the art Section 3.1 is
completely restructured compared to [Maye 10] and updated for the year 2016. The
evaluation in Sections 3.3,3.4 and 3.5 is new in terms of the data utilized, the observer
corrections and the evaluation measures.

3.1 State of the art

Since the first appearance of commercially available OCT systems, automated retinal
layer segmentation algorithms were presented to objectively quantify the thickness of
the retina or retinal layers. While segmentation algorithms are built into commercial
systems and are refined over time, their designs remain undisclosed. In the following,
we give a short review of the published research on retinal layer segmentation and
mention only those works that are the most important. A complete overview is given
in the Tables B.1 and following in the Appendix. They contain the retinal layer
segmentation overview from [Maye 10] and extend it to all retinal layer segmentation
methods known to the author up to the beginning of the year 2016. In the follow-
ing, we do not mention the number of retinal layers segmented, which for recently
published algorithms usually are between 5 and 10. Almost all algorithms can be

21



22 Chapter 3. Retinal layer segmentation

extended to segment more layers when the quality of the data is sufficient. Specific
numbers of segmented layers are included in the table overview in the Appendix.

There are multiple possibilities to group the various algorithms in the field. One
could for example focus on the data the algorithm is applied to, i.e. TD- or FD-
OCT data, linear scans through the macula or circular scans around the ONH, and
volume scans in the macula or ONH region. In our days, the FD-OCT systems have
almost replaced TD-OCT in the clinics. Most 2D segmentation methods can be
either applied to 3D data directly by a slice-by-slice application or reformulated for
a real 3D approach. A more appropriate grouping of the research in the automated
retinal layer segmentation field is by the mathematical method utilized. The majority
of works published can be divided into the following groups: Edge detection or
intensity-based methods that build on various pre-processing and regularization
or post-processing steps. The presented algorithm falls into this category, too. The
usage of active contours or active appearance models enables the inclusion
of shape priors. The most dominant group of algorithms in recent years are graph-
based algorithms, either using dynamic programming or graph cuts to find the
segmentation result. Some algorithms use ideas from multiple algorithm groups. The
methods developed over time:

Edge detection and intensity-based methods: Koozekanani et al. [Kooz 01]
published the first automated retina segmentation algorithm for OCT scans. An
edge detection approach was introduced that also takes the leading sign of the
derivative into account to differ between rising and falling intensity along a depth
profile. One major challenge of OCT data segmentation was already mentioned:
The speckle noise that corrupts OCT images is non-Gaussian, multiplicative and
neighborhood correlated (for more information on OCT speckle noise see [Schm99,
Grzy 10, Lee 11, Kiri 14]). It cannot be easily suppressed by standard software de-
noising methods. Ishikawa et al. [Ishi 02, Ishi 05] use gradient-based edge detection
followed by an integrity check. The median filter used by Ishikawa et al. for pre-
processing of the OCT image was replaced by anisotropic or complex diffusion in later
works [Fern 05, Muja 05]. The post-processing of the initial segmentation was refined.
Baroni et al. [Baro 07] detect outliers in the segmentation by the distance to an av-
erage constant line and assign the boundaries by a dynamic programming approach
on detected edges. Tan et al. [Tan 08] and Fabritius et al. [Fabr 09] use a multiscale
approach for iterative segmentation refinement. The inclusion of 3D neighborhood
information was also proposed by Tan et al. [Tan 09]. Blood vessel detection and
removal further enhances segmentation results [Chiu 10, Lu 10, Golz 11]. Up to now,
methods based on pre-processing and edge detection are proposed [Niu 14].

Active contour or active appearance model: As mentioned, active contour
methods have the advantage that model information may be included. Yazdanpanah
et al. [Yazd 09, Yazd 11] proposed this by including a shape prior, the deviation of
the segmentation from a circle, into the energy functional to minimize. Also included
in the energy term are a measure to prefer regions of homogeneous intensities and a
gradient measure. The segmentation was tested on scans of rat eyes. The drawback of
the active contour methods is that a proper initialization for the contour optimization
has to be given. Yazdanpanah et al. used manual initializations with few points on
each boundary, which makes the method semi-automatic. Kajic et al. [Kaji 10] solve
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the problem by an initial segmentation with adaptive thresholding. They include
shape and texture information learned from training data into their active appearance
model. Due to the use of the model shape information, the method is very robust to
noise. A dynamic programming approach yields an initialization for the method of
Mishra et al. [Mish 09]. K-means clustering delivered the segmentation initialization
for Ghorbel et al. [Ghor 11]. Rathke et al. [Rath 14] were the first to include not
only local shape information learned from training data, e.g. differences to a model
made of layer positions, but global shape information. Their model is based on a
mixture of Gaussians. This approach has several advantages: The shape term of the
regularizer can be directly used as a discriminative feature for glaucoma detection
and a quality index for the segmentation result can be derived from the model. But
another drawback of the approaches utilizing model information also becomes clear:
If the model is learned form healthy eyes only, the segmentation of glaucomatous eyes
is more likely prone to error. Rathke et al. clearly point this out and propose future
work to overcome this problem. Other works avoid the issue by evaluating only on
data from normal subjects [Kaji 10, Ghor 11] in the case scans of humans are to be
segmented.

Dynamic programming: Chiu et al. proposed a dynamic-programming-based
approach [Chiu 10]. Graph weights are computed out of gradients and pixel dis-
tances, and the minimal path is found by Dijkstra’s algorithm. A similar approach
with slightly different graph weights, consisting of gradient information from two dif-
ferent scales, was proposed by Yang et al. [Yang 10] at the same time. While still
multiple heuristical refinements and assumptions are used in the case of [Chiu 10],
both publications show the strength of the method, i.e. a compact algorithm that
delivers good results within small computation time and without model assumptions.
The approach has been taken up by others [Ehne 14] and the groups around Chiu and
Yang have further published works that enhance the original algorithms and show
their applications on scans of diseased eyes [Yang 11, Srin 14a, Chiu 15]. However,
the dynamic programming methods are B-scan based, as an extension of Dijkstra’s
algorithm to be utilized for a real 3D segmentation is not straightforward.

Graph cuts: The strength of minimum cut graph-based methods is the easy
extension to 3D, therefore they are the most prominent methods used to segment
retinal layers in volume scans. The first graph-cut segmentation algorithm for retinal
layers was proposed by Haecker et al. [Haek 06] and further extended by Garvin et
al. [Garv 08]. Weights in a graph are constructed by gradient, intensity, integrated
intensity measures and known position boundaries. The segmentation is the surface
or cut in the graph with lowest cost [Boyk 00, Boyk 01, Boyk 06]. Various enhance-
ments to the original algorithm have been proposed, especially for the weights of
the graph. Quellec et al. [Quel 10] improve the algorithm by incorporating texture
features as graph weights and automatically detect abnormalities from the segmenta-
tion results. Dufour et al. [Dufo 13] include model information and shape constraints
into the graph weights, which leads to good segmentation results on noisy images.
To overcome heuristics, Antony et al. [Anto 13] use a machine-learning approach to
design the entire cost function and graph weights for the graph-cut method. The
method can be easily adapted to retinas from different species (mice, canines) but
does rely on good training examples. A similar approach has been proposed by
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Lang et al. [Lang 13], where the graph-cut segmentation utilized probabilities from
a preceding pixel classification approach that classifies pixel for belonging to certain
regions and boundaries. This method was further extended by Carass et al. [Cara 14],
were the graph-cut segmentation holds as an initialization for a level set refinement.
The level set method allows subpixel accuracy and therefore layers below 1 pixel in
strength, i.e. missing layers may be detected. Furthermore Carass et al. introduce
the concept of “flat space” as a new computational domain for OCT images that is
learned from training data.

An approach that does not fall into the 4 categories above is segmentation by
classification. Szulmowski et al. [Szul 07] used manually drawn regions inside a
volume to train a classifier and segment the rest of the volume, thus it is a semi-
automated method. Vermeer et al. [Verm10] performed a pixel-wise classification
to layers with support vector machines trained on separate data, followed by a level
set regularization. This also avoids the use of heuristics at the cost of extremly high
computation time.

Today, the goals of segmentation on OCT data expand beyond the retinal layers,
e.g. the sklera/choroid boundary becomes another focus of work [Kaji 12, Alon 13,
Tian 13, Chen 15].

While the evaluation of algorithms in early works was sometimes limited to visual
inspection [Fern 05, Szul 07, Mish 09] or error marking [Ishi 02, Ishi 05, Haek 06], every
recently published work shows the validity of the segmentation approach by a quanti-
tative evaluation in comparison to manual segmentations or a gold standard derived
from manual segmentations. However, most of the times only overall numbers over
the complete or a subgroup dataset and no local error information, i.e. were the errors
most likely take place in an image, are given, with the exception of [Ehne 14, Kaba 15].
Furthermore, the works that included datasets of glaucoma patients in their evalua-
tion are limited [Ishi 02, Ishi 05, Tan 08, Tan 09, Verm10, Golz 11, Kafi 13]. Glaucoma
patient data offers challenges that scans of healthy subjects do not have: The thick-
ness and shape of the RNFL may be altered, which invalidates models generated
from healthy subjects. In some severe cases the RNFL may be even missing. Srini-
vasan et al. [Srin 14a] targeted missing layers, but only on mice data. Theoretically,
the level set refinement with sub-pixel accuracy of Carass et al. [Cara 14] is able to
detect missing layers. However, this was not evaluated for glaucoma patients. Also
scan quality is most often not considered in evaluations, as low quality images are
excluded in the evaluation by design [Lang 13, Cara 14], or the quality of the scans
is not even mentioned. Only Somfai et al. [Somf 07] modeled operator errors and
their influence on segmentations and Dufour et al. [Dufo 13] specifically target their
approach on low quality images.

In the next Section 3.2, an automated segmentation of retinal layers mostly based
on pre-processing and edge detection is presented, with the exception of the ONFL
segmentation, where we use a discrete optimization of an energy functional, compa-
rable with active contour approaches. The segmentation is a 2D approach working
on circular FD-OCT scans, but it can be applied on 3D volume data, as it is shown
in Section 3.6. The goal during the development of the algorithm was to make as
few assumptions on the layer borders as possible. These few assumptions should be
very general. Reliable application to pathological cases with the glaucoma disease
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should be possible without changing any parameter, even in the case of a RNFL
hole. Bad image quality should not lead to segmentation errors. The evaluation pre-
sented in Sections 3.3 to 3.5 includes data from glaucoma patients of different disease
stages, good and bad quality images, and points out areas of higher segmentation
error probability.

3.2 Automated segmentation method
The goal of the automated retinal layer segmentation algorithm presented is to seg-
ment 5 retinal layers or layer groups corresponding to 6 retinal layer boundaries.
The denominations of all retinal layers are given in 1.3. The RNFL, GCL+IPL,
INL+OPL, ONL+ELM and IP+OP+RPE are the layer groups to segment, of which
the RNFL and GCL+IPL are of most importance to glaucoma diagnosis. At an early
stage of glaucoma diagnosis with OCT, the RNFL was the main retinal layer for ob-
taining glaucoma parameters [Gued 03, Woll 05, Polo 08, Horn 09], with the GLC+IPL
coming into focus recently [Taka 12, Begu 14, Mwan 14] as commercial retinal layer
segmentation software is now able to segment this layer. The retinal layer bound-
aries corresponding to the 5 layers or layer groups are the ILM, outer retinal nerve
fiber layer (ONFL), IPL/INL, OPL/ONL, ELM/IP and RPE boundaries. They are
marked with consistent colors throughout this work, with exceptions clearly stated.
The ILM is red, ONFL green, IPL/INL orange, OPL/ONL rose, ELM/IP yellow and
RPE blue, as can be seen in Figure 3.3 g) or Figure 3.10.

The algorithm is built around a few general assumptions that hold for both normal
and glaucomatous eyes:

• The intensity distribution along the A-Scans is such that the most reflecting
layers are the RNFL on the inner side, and the RPE on the outer side of the
retina.

• The RPE boudary is not disrupted and has a simple shape, i.e. the shape can
be modeled by a polynomial of small degree.

• An adequate pre-processing followed by edge detection with regularization is
sufficient for segmenting most layer boundaries except the ONFL.

• The inner layer boundaries IPL/INL, OPL/ONL and ELM/IP are to a large
extent parallel to the RPE boundary.

As the focus of this work is the glaucoma disease and the data was collected for
glaucoma research purposes, we expect most of the scans in the database to conform
to the assumptions, but these may be violated on scans of subjects with other diseases
or scans with operator errors.

All algorithm parameters were manually adapted by visually inspecting random
sets of images from the database. The processing steps of the algorithm are shown
in Figure 3.1 with visual examples of the steps provided in Figures 3.2 and 3.3. A
scan from a glaucoma patient was chosen as an example. This scan is not included
in the database. The full scan with the corresponding SLO image was already shown
in Figure 1.2 c) and d). It shows an almost complete loss of the RNFL in the
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Figure 3.1: Algorithm overview. The input data is an circular OCT B-Scan around
the optic nerve head. The retina detection is colored in blue, the blood vessel detec-
tion in dark red, the inner layer detection in orange and the outer nerve fiber layer
detection in green. Important steps are marked with bold rectangles in the color used
for the respective layer throughout the work. Layer smoothing steps are omitted in
the overview for a clearer view.

transition between the inferior and temporal quadrant, while the other regions still
have relative high RNFL thickness. The processing steps of the algorithm can be
roughly divided into 4 groups: Retina detection, blood vessel segmentation,
inner layer segmentation and ONFL segmentation. The steps are detailed in
the following:

Retina detection: The input to the algorithm is a circular OCT B-Scan around
the ONH with a diameter of 3.46mm captured with the HE Spectralis and with
768 A-Scans. To limit the search space for the retinal boundaries, first a separating
line located inside the outer nuclear layer is identified. It splits the image content
into the inner segment (IS) and the outer segment (OS) of the retina. The original
image is blurred in the linear domain with a wide Gaussian filter (standard deviation
σ = 22 pixels). The separating line is the minimum with the lowest intensity value
between the two maximums with the highest intensity value in the Z-direction (see
Figure 3.2 a) and Figure 3.4 a)). Note that the position of the separating line in
Figure 3.2 a) has changed compared to the preceding work [Maye 10] as larger kernel
sizes are used. The intensities of each A-Scan are scaled to [0; 1] in the IS and OS
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(a)

(b)

(c)

(d)

(e)

Figure 3.2: Processing steps of the retinal layer segmentation (first part). The ex-
ample scan is of a glaucomatous eye with local nerve fiber layer loss. The original
complete scan is shown in Figure 1.2 c). The algorithm step images are cut in verti-
cal direction to show only the retina. (a) Separating line in the outer nuclear layer
detected. IS: Inner segment of the retina. OS: Outer segment of the retina. (b) Inner
limiting membrane (ILM) and retinal pigment epithelium (RPE) detected. A-Scans
aligned such that the retinal pigment epithelium forms a constant even line. (c) Re-
sult of the blood vessel detection. Blood vessel positions are marked in transparent
red. (d) Image with interpolated blood vessels and denoised with an average filter.
3 intensity drops in the inner segment of the retina are detected. Color assignment
is by the order of the strength of the contrast drop in the A-Scan. The segmented
OPL/ONL boundary before smoothing is the outermost contrast drop. (e) Segmenta-
tion result for the inner layers. At the right side of the image, there is a segmentation
error in the IPL/INL boundary, marked with an arrow.



28 Chapter 3. Retinal layer segmentation

(f)

(g)

Figure 3.3: Processing steps of the retinal layer segmentation (second part). Further
information on the example image see Figure 3.2. (f) Image with interpolated blood
vessels and denoised with complex diffusion. It shows the initial distorted segmen-
tation of the outer nerve fiber layer boundary formed by heuristic decisions (dark
orange) and result after the energy minimization (green) before smoothing. (g) Final
result with all segmented boundaries painted on the original (not flattened) image.

separately. The ILM is then set to the greatest intensity rise in the IS, i.e. the second
derivative along the A-Scan is 0 and the gradient is highest. A contrast rise is an
increase in intensity seen from the inner Z-direction. For the RPE segmentation, a
rough speckle noise removal is used. A 2D median filter (size 5 in Z and 9 in R-
direction) is applied twice, as proposed by Ishikawa et al. [Ishi 05]. The RPE is the
greatest intensity drop in the OS.

The ILM and the RPE segmentation are smoothed with a procedure that is com-
mon to all the layer boundary results, also the layer boundaries following later in the
segmentation process. The single line smoothing steps are displayed in Figure 3.5.
First a median filter is applied. Then distant line segments, i.e. line segments that
do not have any other line segment in a defined neighborhood around their left or
right end, are removed. Additional outliers are detected by fitting a polynomial to
the line and removing distant line segments afterwards. Then short segments are
removed. The holes in the line resulting from the removal of points are filled with
linear interpolation and finally a second median filter and Gaussian smoothing are
applied. The parameters for the smoothing process differ slightly from layer bound-
ary to layer boundary and some smoothing steps may be omitted. In the case of the
RPE, the median filters have the width 9, no distant line segments are removed, the
polynomial has the degree 6, the line segments must have at least the length 6 and
the Gaussian filter has a standard deviation of σ = 3 pixels. In the next Section 3.3,
it will be explained where the source code for the algorithm and example algorithm
parameters are publicly available. Therefore, and as the smoothing parameters for
each layer boundary differ only slightly, the enumeration of all smoothing parameter
values has been omitted for the rest of the algorithm description to favor readability.
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Figure 3.4: Intensity plot along an A-Scan (a) and corresponding derivative (b). The
A-scan # 315 of the example image with an average filter applied (Figure 3.2 (d)) is
shown. It is cropped to the retina region. The intensity rise at the ILM and ELM/IP
boundary, as well as the intensity drops at the ONFL, IPL/INL, OPL/ONL and the
RPE boundary are marked. The separation line between the inner and outer segment
of the retina is also drawn. In b) the 5 greatest contrast drops in the inner segment
(IS) are marked. The first 2 in the Z-direction correspond to remaining speckle noise
in the retinal nerve fiber layer, the others to the layer boundaries to segment.
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Figure 3.5: Line smoothing algorithm steps. All segmented layer boundaries are
smoothed by using these processing steps in the displayed order. Parameters may
change and certain steps may be excluded for particular layer boundaries.

After the smoothing, the A-Scans of the original unprocessed image are aligned
such that the RPE forms a constant even line (see Figure 3.2 b)).

Blood vessel detection: For the blood vessel (BV) detection, we use the fact
that the motion inside BVs casts a shadow along the remaining A-Scan depth. The
image intensities are single square-rooted. This intensity domain proved to provide
the best results for BV detection. The BV positions are determined by adaptive
thresholding along the RPE. A layer of 8 pixels above the RPE is summed along the
Z-direction to form a RPE intensity profile. The average of this profile is computed
in a 61-pixel wide window. If the value of the profile in the middle of the window is
lower than 0.7 times the average, it is marked as a blood vessel. An example result is
shown in Figure 3.2 c). As the size parameter of the average window and the threshold
are fixed, some large vessels above 12 pixels in width are not detected. However the
results are sufficient for the next segmentation steps. After the BV detection, the
RPE on BV positions is invalidated and linearly interpolated. The linear interpolation
over BV regions is also incorporated in the smoothing of all following segmented layer
boundaries.

For the remaining processing steps, the image intensities are double square-rooted
from the original linear domain. The A-Scans of the image of BV positions are
interpolated in R-direction from their direct neighbors. BVs with a diameter of more
than 4 pixels are enlarged by a factor of 2 in width for this purpose, as the BV regions
for large BV do span more A-Scans than the casted BV shadow. Slightly different
but similar approaches to segment the layers over BV regions have been proposed by
[Chiu 10] and [Golz 11].

Inner layer segmentation: The image is denoised with a mean filter (size 3
in the Z- and 7 in the R-direction). The averaging is a sufficient denoiser for the
inner layer segmentation. The 2 highest intensity rises, i.e. with the largest gradient,
between the IS/OS separation and RPE are detected, which should correspond to
the ELM/IP and OP/RPE boundary. The ELM/IP is set to the innermost of these
2 intensity rises.

Afterwards, we find the 3 highest intensity drops between the ILM and the IS/OS
separation. In Figure 3.2 d) these 3 highest intensity drops are drawn. The colors are
assigned by gradient strength in the A-Scan. Note that the gradient strength does
not correspond to a valid boundary assignment. The OPL/ONL is the outermost
of the intensity drops and the IPL/INL the middle one. The inner boundaries are
regularized by the distance to the RPE. If a boundary position to the RPE deviates a
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more than the average boundary distance to the RPE, i.e. outside a certain threshold
(3 pixels for the ELM/IP and OPL/ONL, 8 pixels for the IPL/INL), it is invalidated.
There is one exception to this rule: This thresholding is not applied to the IPL/INL in
the temporal quadrant, as the IPL+ONL layer group in general increases in thickness
in this quadrant. The inner layer boundaries are smoothed with the steps shown in
Figure 3.5.

ONFL segmentation: Average filtering as denoising followed by a simple edge
detection will not give promising results for the ONFL, even when the ILM and
IPL/INL positions are known. This holds especially in the cases of general low image
quality, glaucoma patients with a complete local loss of the RNFL, or normal subjects
with a very thick RNFL. For the last two challenges, a state-of-the-art pre-processing
with sophisticated denoising as proposed by Fernandez et al. [Fern 05] and Mujat
et al [Muja 05] is also insufficient. A neighborhood integrity check as mentioned in
[Ishi 05] might not be able to cope with a jump of the segmented border in a whole
region to a more contrasty outer layer border. Assumptions on the layers, as made
by Garvin et al. [Garv 08], may be violated in pathological cases, or parameters have
to be adapted for either normal subjects or glaucoma patients. Our approach is as
follows:

The original image is denoised with complex diffusion (see Gilboa et al. [Gilb 04])
as proposed by Fernandez et al. [Fern 05]. Our implementation is not based on
the traditional time-marching implementation, but uses lagged diffusivity [Voge 96,
Chan 99]. The code of the algorithm can be downloaded from the homepage of the
pattern recognition lab of the FAU (http://www5.cs.fau.de) from the author’s
personal page. The timestep parameter was set to 13, while the σCD parameter, that
controls which gradients are detected as edges, is directly estimated from the image:

σCD =
1

3
std
r,z

(|I(r, z)− Imedfilt(r, z)|); (3.1)

I(r, z) denotes the original image matrix, Imedfilt(r, z) is the original image on which
every A-Scan is filtered with a median filter of width 7. The 1

3
is a heuristic weighting

factor. The computation of the standard deviation of all pixels is abbreviated by
std
r,z

(...). The noise estimate does not correspond to a physically meaningful noise

measurement on the OCT data, but it has proven to adapt to the different noise
levels and qualities of the OCT B-Scans by visual inspection.

If they are present, the two largest contrast drops are detected between the ILM
and IPL/INL. Actually, only one layer boundary with falling contrast should lie be-
tween the ILM ans IPL/INL boundary, namely the ONFL. To derive an initialization
for the following energy minimization, the following heuristic is used: We choose the
lowermost contrast drop and blur the line by applying a median (width 5 pixels) and
Gaussian (sigma 15 pixels) filter. If only one contrast drop is detected, we trust this
initialization. In all other regions, the initialization is set to the ILM, as we do not
assume a correct segmentation there. Either no contrast drop is detected, in which
case a complete RNFL loss is most likely, or remaining speckle noise within the RNFL
produced a second contrast drop. This method delivers a very distorted initializa-

http://www5.cs.fau.de
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tion for the segmentation shown in Figure 3.3 f) in dark orange. To improve it, we
formulate an energy-minimization-based approach:

E(r, ONFL(r)) =G(r, ONFL(r))

+ αN(ONFL(r − 1), ONFL(r), ONFL(r + 1))

+ βD(r, ONFL(r));

(3.2)

minimize
ONFL(r)

∑
r

E(r); (3.3)

ONFL(r) gives the Z-position of the boundary at A-Scan position r. E(r) is
the energy at A-Scan r that is minimized. It consists of three terms. Two factors, α
and β weight these terms. They are set to 1

100
and 1

1000
respectively. The first term,

G(r, ONFL(r)) is the gradient of A-Scan r at depth ONFL(r). As the ONFL is a
contrast falloff in Z-direction, this scalar gradient should have a negative sign with
an absolute value as high as possible. N(ONFL(r − 1), ONFL(r), ONFL(r + 1))
is a first smoothing term involved in the formulation that ensures that there are no
high jumps in the border, while allowing for some edges. It is the sum of the absolute
differences in depth ONFL(r) of A-Scan r and its neighbors:

N(ONFL(r − 1),ONFL(r), ONFL(r + 1)) =

|ONFL(r − 1)−ONFL(r)|
+ |ONFL(r + 1)−ONFL(r)|.

(3.4)

The second smoothness term D(r, ONFL(r)) works on a more global scale. It is
motivated by the observation that, when the A-Scans are aligned for an even RPE,
the ONFL is part-wise almost even, too. In Baroni et al. [Baro 07] the distance to
a constant line along the whole B-Scan was taken as a smoothness term. We take
this idea up and extend it. The RNFL should not be as constant as possible over the
whole B-Scan, but within certain regions. To avoid using arbitrary positions on the
image, the regions between blood vessels are used. D(r, ONFL(r)) is therefore the
distance to the average height of the segmented boundary between two blood vessels:

BV Rk =
1

#BV Rk

∑
r∈BV Rk

ONFL(r); (3.5)

D(r, ONFL(r)) = ONFL(r)−BV Rk; (3.6)

BV Rk is a region between two blood vessel centers with identifier k. Depending on
the blood vessel segmentation, there can be an arbitrary number of such regions.
To keep the number of regions reasonable, very small blood vessels with a diameter
below 4 pixels are ignored for the blood vessel center computation. #BV Rk is the
number of A-Scans in the blood vessel region k. BV Rk is the mean depth of the
ONFL within in the blood vessel region k.

The energy formulation in Equation 3.2 is solved iteratively. For each A-Scan r,
the energy above and below the current position is computed and the ONFL position
is moved by one pixel in the direction with decreased energy, until an iteration limit
is reached or no change happens anymore. The algorithm is summarized as pseudo
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code in Figure 3.6. The result is painted in green in Figure 3.3 f). It can be observed
that only a local minimum of the energy formulation is found. Some of the ONFL
positions get stuck on wrong layer boundaries or speckle noise due to the gradient
weight overpowering the smoothness weights for the direct neighboring positions.
The simple optimization that moved the boundary only by one pixel in each step is
suboptimal. It could be replaced by more elaborate discrete optimization techniques,
e.g. simulated annealing or genetic optimization. However, after smoothing the
result similar to the other layers with the steps given in Figure 3.5 the outliers vanish
and the results have proven to be adequate by (1) the evaluation in the preceding
work [Maye 10] and (2) by inspecting randomly selected images from the current
database during the process of the manual algorithm parameter adjustment. At A-
scan positions r were no contrast drops was detected between the ILM and IPL/INL
at all, the ONFL is set to the ILM before the smoothing process, i.e. a complete
RNFL loss is assumed. The result of the algorithm transformed back to the original
(not flattened) image is shown in Figure 3.3 f).

The code was written in Matlab (Mathworks, Inc.) and is freely available (see
upcoming Section 3.3). The average runtime was measured using a MacBook Pro,
Intel Core 2 Duo, 2,66 GHz with 4GB main memory in the preceding work [Maye 10]
and did not change to a large extent. The computation time of the additional steps is
compensated by the possibility to run the complex diffusion filter on a more restricted
area. Only one processor core was utilized. The average runtime for each B-Scan is
around 20s. It did not differ substantially from normal subjects to glaucoma patients,
or between images of good to bad quality. Included in the average runtime are the
loading of the data from the hard disc and the storing of the results. The main part
of the time spent is used for the complex diffusion filter. Diffusion filters can be
massively optimized for speed by using multi-grid technologies. Other parts of the
algorithm can also be sped up by implementing them in a more efficient language, for
example C++. However, algorithm speed is not the focus of this work. Therefore,
we did not optimize for computational efficiency. In fact, some of the computations
are carried out multiple times for a more structured, easy-to-read code.
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iteration = 1;
somethingMoved = true;
while iteration < MAXITER and somethingMoved do
somethingMoved = false;
for all r do
Compute E(r, ONFL(r));
Compute E(r, ONFL(r) + 1);
Compute E(r, ONFL(r)− 1);

end for
for all r do
if E(r, ONFL(r) + 1) < E(r, ONFL(r)) then
if E(r, ONFL(r)− 1) < E(r, ONFL(r)) then
if E(r, ONFL(r) + 1) > E(r, ONFL(r)− 1) then
ONFL(r) = ONFL(r) - 1;
somethingMoved = true;

else
ONFL(r) = ONFL(r) + 1;
somethingMoved = true;

end if
else
ONFL(r) = ONFL(r) + 1;
somethingMoved = true;

end if
else
if E(r, ONFL(r)− 1) < E(r, ONFL(r)) then
ONFL(r) = ONFL(r) - 1;
somethingMoved = true;

else
Do nothing;

end if
end if

end for
iteration = iteration + 1;

end while

Figure 3.6: A simple iterative scheme for minimizing the energy formulation in Equa-
tion 3.2. The position of the ONFL at A-Scan r ONFL(r) is moved one pixel up or
down if the energy at this A-Scan is decreased thereby. First all the energy above, at
and below the current ONFL position is computed, afterwards the decisions to move
the position are made. The iteration limit MAXITER is set to 200. Variable and
function names are chosen such that they describe their content or behaviour.
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Figure 3.7: Screenshot of the OCTSEG tool. The main window on the left upper
side controls the automated segmentations and opens the tools for manual correction,
visualization and export. On the upper right side, the visualization window is dis-
played. It renders the segmented layer boundaries on to the OCT image and displays
the corresponding SLO image. Various display modes are available, e.g. visualization
of en-face views for OCT volumes. On the lower left side, the manual correction win-
dow is shown. Layers boundaries may be corrected by free hand drawing. Display
modes for contrast change, scaling and zooming support the correction. On the lower
right side, the feature export window is shown that enables feature export for the use
in a classification system.

3.3 Evaluation construction

A graphical user interface (GUI) was written in Matlab (Mathworks, Inc., Natick,
Massachusetts, USA) with the intention to display the segmentation results and to
allow for a manual correction. The software is called OCTSEG (OCT segmentation
and evaluation GUI). The abilities of OCTSEG expanded over time. The automated
segmentation for circular scans and also volumes was included and export functions
written, e.g. to export the layer data in text tables, feature export and batch image
processing. A screenshot with some further explanation on the GUI is displayed in
Figure 3.7. The tool has proven its usefulness in publications from various groups
[Laem11, Torn 11, Feno 13, Balk 13, Kola 13, Balk 14, Odst 14]. The program was
published in compiled form on the homepage of the pattern recognition lab of the FAU
(http://www5.cs.fau.de) on the author’s personal page and under “Free Software”.
Since the beginning of 2016, the source code is freely available from the same address.

In the manual correction mode of OCTSEG, various display modes are available,
for example the image contrast can be adjusted and layer borders can be switched

http://www5.cs.fau.de
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on and off. The image can be scaled and zoomed. The simultaneously acquired
SLO image of the Spectralis is displayed in addition. Corrections to the automated
segmentation can be made by free-hand repainting of the segmentation borders. No
region has to be selected. The method allows correcting even for smallest errors.

We decided to let observers not draw complete manual segmentations, but to
correct errors of the automated segmentation. Both methods have their advantages
and disadvantages. The main advantage of a complete manual segmentation is that
the observer is not biased by a given segmentation, and is therefore forced to look at
each part and boundary of the image. When manual correction is applied, errors may
be overseen by the observer, may it be due to fatigue or time pressure. However, the
unbiased manual segmentation leads to offsets in the segmentation lines, even within
one image and especially between observers. This means that lines or line segments
are shifted by a few pixels distances. The human observers do not pay attention to
this constant shift. This offset has to be taken into account in the evaluation. To
our knowledge, only the group of Chiu and Farsiu [Chiu 10, Srin 14a, Chiu 15] have
taken the offset of manual segmentations into account in their evaluation. Manual
correction avoids a global bias of the observers.

The second reason for the correction of errors is that a complete manual segmen-
tation of the segmentation evaluation dataset would be too time-consuming. For the
manual correction alone, about 5 to 6 hours of pure correction time is the minimum
for the the 120 scans of the segmentation evaluation dataset, not taking necessary
breaks into account. Pure manual segmentations are therefore often restricted to
prominent layer boundaries and the number of observers is limited, in most cases to
2 (see the retinal layer segmentation literature overview Tables B.1 and following). In
addition, to speed up the manual segmentation process, methods like spline drawing
are used, which do not allow to follow a layer boundary precisely. We decided for a
manual correction of segmentation results which allowed us to have the automated
segmentations corrected by 5 independent observers.

The observers included 4 computer scientists and 1 physicist, all working in the
field of ophthalmic imaging and therefore familiar with OCT data. All but one had
at least two or more years of experience in the field. The remaining observer had one
year of experience with ophthalmic imaging. The observers were provided with an
introductory manual that explains the use of the OCTSEG software for this task and
points out helpful tools and procedures. Furthermore, instructions on the positioning
of the layer boundaries were given by the author, with an example image not included
in the segmentation evaluation dataset for further clarification. Special instructions
were given for the IPL/INL and ONFL layer boundary in blood vessel regions and for
images with poor quality. These special instructions were as follows (literally copied
from the instruction text):

• “(...), the IPL/INL boundary needs some additional explanation: In regions
outside blood vessels it is positioned above a thin dark layer. (...) I suggest that
you use the following rule: If the thin dark layer is visible, use it as a reference
and follow it above. If the contrast is very low, or the blood vessel is positioned
very deep, follow it on both sides until you are near the blood vessel shadow and
then interpolate over the blood vessel region.
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• For the ONFL boundary in blood vessel regions: If you can see/feel a clear
boundary, follow it (e.g. the large blood vessel region on the left of the example
scan). If there is no clear distinction between what is blood vessel and what
are nerve fibers, interpolate over the blood vessel region (e.g. the middle blood
vessels in the example image).

• If the quality of an image is so bad that even you as human cannot see the
boundaries: Use your intuition.”

The observers fulfilled their tasks independently. The automated segmentations
were carried out on the full classification dataset with the same parameters for every
scan. No segmentation was reperformed with different parameters. In addition to the
5 observers correcting the data from the segmentation evaluation dataset, the author
corrected the automated segmentations of the full classification dataset, including
the correction of the blood vessel segmentation, which was not performed by the
observers. While it would be desirable to have multiple observer corrections on the
full classification dataset, this was not possible due to time issues: The correction of
all 1024 scans took round about two weeks.

From the manually corrected observer segmentations, a gold standard (GS) to
evaluate the automated segmentations is constructed. Ideally the observer behavior,
i.e. where and how corrections are made, should be identical among the observers
given their experience with OCT data and the detailed instructions. This is by far
not true, as will be shown in Section 3.4. The following scheme is used for the
construction of a gold standard for each A-Scan position and layer boundary:

• At least 2 observers must have corrected the boundary at the specific A-Scan
position, otherwise the automated segmentation is taken over as the gold stan-
dard.

• If exactly 2 observers corrected the boundary, the layer position nearer to the
automated segmentation is preferred.

• When 3 or more observers corrected the boundary, the median position among
the observers defines the gold standard.

This scheme ignores outlying corrections and observer opinions, and the resulting
gold standard is not an average, but lies exactly on a position where at least one
observer set it. The properties of the observer and the author corrections and their
relationship to the GS are detailed in the following Section 3.4. The automated
segmentations are evaluated with the help of the GS in Section 3.5. Contrary to the
preceding work [Maye 10], where only the RNFL thickness was of interest and was
therefore evaluated, a direct comparison of the layer boundary positions is carried
out for each of the layers. Overall values averaged over all boundaries are only given
where they make sense, as the results differ much between the layer boundaries. The
measures are computed from layer boundaries in a [µm] scale:
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L(r) = Lpixel(r) · ScaleZ (3.7)

where L(r) is a retinal layer boundary position in µm from the inner side of the OCT
scan at A-Scan position r, Lpixel(r) the boundary position from the inner side of the
scan in pixels and ScaleZ the pixel spacing in the Z-direction in µm/pixel. ScaleZ is
3.86µm/pixel in the case of the Spectralis. The evaluation measures computed from
the layer positions are proposed in the respective Section 3.4 or 3.5 in conjunction
with the results and a discussion, if appropriate or necessary.

3.4 Observer evaluation and discussion
A first measure to quantify observer behavior is to have a look at how much A-Scan
positions each of them corrected, i.e.:

CFo,l =
100%

#R ∗#DB

∑
i∈DB

∑
r∈R

χ(Lo,i,l(r) 6= Lautom,i,l(r)) (3.8)

were CFo,l is the corrected fraction (CF ) of A-Scans for a specific observer o and
layer boundary l. DB is the set of images in the segmentation evaluation database,
i a specific image from this database, and #DB the number of images in the database,
which is 120 for the full segmentation evaluation database. R are all the possible
A-Scan positions {1, 2, 3, . . . , 768}, a subset of N. Herein r is a specific A-Scan
position and #R the number of possible A-Scan positions, which is 768 for our
database. The indicator function χ(...) is 1 if the expression inside the brackets
is true and 0 otherwise. Lo,i,l(r) is the layer boundary position of layer boundary l as
seen by observer o on image i at A-Scan position r. Lautom,i,l(r) is the layer bound-
ary position of layer boundary l from the automated segmentation on image i at
A-Scan position r. For the following equations, L(r) with one or multiple subindices
always denotes a layer boundary position at A-Scan position r, e.g. from a specific
image i, a specific layer l, a specific observer o, the gold standard GS, the automated
segmentation autom or the author’s correction author.

The CFo,l measure tells us how much of the automated segmentations of layer l
the observer o has “touched”, i.e. moved from the position of the automated segmen-
tation. A similar measure can be computed for the gold standard and the author’s
correction by replacing Lo,l(r) with LGS,l(r) or Lauthor,l(r) respectively. If all the ob-
servers would have seen the same layer positions as erroneous, CFo,l would be the
same for each observer o. However, the corrected fraction of A-Scans differs from
observer to observer, as the table of the CF results Table 3.1 tells us. In general,
the RPE and ELM/IP boundary had to be corrected only to a minor extent with
the CF values of all observers, the GS and the author being equally low. The ONFL
and IPL/INL had to be corrected the most. While most of the numbers, including
the GS and the author’s CF fall at least into the same range, there are noticeable
exceptions: Observer 4 corrected the ONFL boundary clearly less than the others. It
has to be noted that observer 4 was the one with the least experience in ophthalmic
imaging. Observer 5 performed only minor corrections to the ILM, but the most
on the ONFL. The author’s CF always lies between those of the observers, except
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Boundary Obs.1 Obs.2 Obs.3 Obs.4 Obs.5 GS Author
ILM 7.5 4.1 7.2 2.2 0.6 4.3 3.5
ONFL 10.8 8.9 14.3 5.6 16.3 13.3 13.8
IPL/INL 9.7 14.7 18.3 14.6 12.6 16.2 12.1
OPL/ONL 3.8 4.3 4.2 6.3 1.2 3.7 6.5
ELM/IP 1.1 2.2 1.4 1.7 1.4 1.7 1.1
RPE 1.1 1.3 1.1 1.9 1.1 1.3 1.2

Table 3.1: Fraction of touched automated segmentation results in the manual cor-
rection per layer boundary l for the observers (Obs.)(CFo,l), the gold standard
(GS)(CFGS,l) and the author (CFauthor,l) in percent [%]. “Touched” in this sense
means that the layer boundary was moved from the automated segmentation for the
respective A-Scan.

Boundary Obs.1 Obs.2 Obs.3 Obs.4 Obs.5 GS Author
ILM 1.24 1.06 1.27 0.92 0.80 1.07 1.02
ONFL 2.79 1.97 2.85 1.32 4.21 2.84 2.98
IPL/INL 2.43 2.39 2.76 2.19 2.61 2.56 2.74
OPL/ONL 0.72 0.66 0.68 0.78 0.37 0.61 1.01
ELM/IP 0.49 0.63 0.54 0.55 0.59 0.58 0.53
RPE 0.51 0.50 0.48 0.55 0.49 0.51 0.52

Table 3.2: Mean absolute difference of the manual correction of the observers
(Obs.)(ODAo,l), the gold standard (GS)(ODAGS,l) and the author (ODAauthor,l) to
the automatically segmented layer boundaries in [µm]. These values hold as a quan-
titative measure of how much correction the observers, the gold standard and the
author applied to the automated segmentation results.

the OPL/ONL boundary, where the CF is greatest among all, closely followed by
Observer 4. Looking at the CF numbers, the GS construction rule that at least 2
observers had to correct a certain position is reasonable. The single large corrected
fractions of Observer 5 for the ONFL, Observer 3 for the IPL/INL and Observer 4 for
the OPL/ONL get less weight, but the CF of the GS segmentation is always more
then the average of the observers’ CF values.

Next we will quantify how much the observers corrected in terms of distance to
the automated segmentation:

ODAo,l =
1

#R ∗#DB

∑
i∈DB

∑
r∈R

|Lo,i,l(r)− Lautom,i,l(r)|; (3.9)

The mean absolute difference of the observer corrections to the automated segmen-
tation ODA is a measure on how much correction was applied. Not only the number
of corrected positions count, but also the distance the layer boundary was moved.
Again, this measure can also be computed for the GS and author. The results, shown
in Table 3.2, are in general more similar to each other for the different observers than
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for the CF values, which suggests that a large corrected fraction CF shows the cor-
rection of minor errors by the observer. The only layer boundary that almost keeps
the CF relationships between the observers is the the ONFL layer boundary. Ob-
server 5 has a 3 times larger ODA value for this layer than Observer 4, roughly the
relationship of the CF values. The GS lies in the middle of the observers for the
ODA values, which is valid. The author applied roughly the same amount of cor-
rection than the GS, with the exception of the OPL/ONL, were he applied the most
compared to the observers.

After quantifying the correction applied to the automated segmentation by the
CF and ODA measures, we will have a look at how the observers’ corrections relate
to each other. Two measures can be computed, the mean absolute inter-observer
difference IOD and the standard deviation STDO among the observers. The mean
absolute difference of one observer to the others for one specific image i is defined by:

IODo,l,i =
1

#R ∗ (#O − 1)

∑
ô∈O,ô 6=o

∑
r∈R

|Lo,i,l(r)− Lô,i,l(r)| (3.10)

where O is the set of observers and #O the number of observers, in our case 5. The
mean absolute difference of one observer to the others for the segmentation evaluation
database is then:

IODo,l =
1

#DB

∑
i∈DB

IODo,l,i; (3.11)

The inter-observer difference IODl for a specific layer is the mean of the IODo,l values
over all observers:

IODl =
1

#O

∑
o∈O

IODo,l; (3.12)

Beside this mean, also the standard deviation of the IODo,l can be computed.
The author’s mean absolute difference to the observers is given by:

IODauthor,l =
1

#R ∗#DB ∗#O

∑
o∈O

∑
i∈DB

∑
r∈R

|Lo,i,l(r)− Lauthor,i,l(r)|; (3.13)

The results for the IODo,l,IODl and IODauthor,l values are given in Table 3.3. The
IODo,l values tell us how far the opinion of a single observer differs from the others.
Except the ONFL values from Observer 5, they are very similar. We can conclude that
Observer 5 corrected the ONFL in a different way than the other observers, despite
the instructions given. The relationship of the IODl with its standard deviation and
the IODauthor,l gives insight in how much the author’s corrections resemble a standard
observer. The IODauthor,l lies within the IODl ± std(IODo,l) range except for the
OPL/ONL and ELM/IP. The fraction of positions corrected for the ELM/IP is very
small, so the only noticeable difference of the author to a standard observer is the
way the OPL/ONL correction took place. Compared to the corrections performed
on the ONFL an IPL/INL, the number of corrections for the OPL/ONL is also small.
Therefore we conclude that the author’s corrections are a valid representation of a
single standard observer opinion for the bulk of manual corrections in the evaluation.
If in clinical practice the OCT system operator decides to correct the retinal layer
boundary segmentation, this is a single observer opinion. Corrections in daily clinical
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Boundary Obs.1 Obs.2 Obs.3 Obs.4 Obs.5 Obs. Avg. Author
ILM 0.63 0.50 0.63 0.46 0.43 0.53 ± 0.10 0.45
ONFL 2.55 2.21 2.54 2.42 3.53 2.65 ± 0.51 2.41
IPL/INL 1.90 1.87 2.00 1.95 2.18 1.98 ± 0.12 1.95
OPL/ONL 0.63 0.53 0.54 0.66 0.55 0.58 ± 0.06 0.82
ELM/IP 0.21 0.20 0.18 0.19 0.19 0.19 ± 0.01 0.16
RPE 0.13 0.14 0.13 0.16 0.13 0.14 ± 0.01 0.13

Table 3.3: Mean absolute inter-observer differences (IOD) for the manually corrected
layer boundaries among the dataset. The observer (Obs.) columns show the mean
absolute difference of the layer positions in [µm] of one observer compared to the
others (IODo,l). The mean and standard deviation of the single observer differences
is given in the observer average (Obs. Avg.) column (IODl). The column “Au-
thor” depicts the mean absolute differences of the author’s manual correction to the
observers’ corrections (IODauthor,l).

practice, if they are carried out at all, are rarely done by the agreement of two
or more operators. We assume that the evaluation results for the author’s manual
correction properties on the segmentation evaluation subset are transferable to the
full classification database. The manual corrections performed by the author on the
full classification dataset can thus be seen as representative for the corrections that
an OCT operator might carry out, if perfect segmentation results are desired in the
clinic.

The IODl can not only be computed over the whole database, but also on subsets
of the database, i.e. scans of low or high quality and scans of normal (with diagnosis
H or OHT) or glaucoma patients (with diagnosis PPG or PG). The results are given
in Table 3.4. No connection between scans of low quality or scans of glaucomatous
eyes can be directly observed. To further confirm these results we compute IODi,l,
the mean absolute inter-observer difference for a specific layer l on a specific image i
from the database, defined as:

IODi,l =
1

#O

∑
o∈O

IODo,l,i; (3.14)

The IODi,l can be correlated with the presence of a low quality scan and the pres-
ence of glaucoma. No significant correlation with P < 0.001 can be found for any
layer. But one must take care: Due to the construction of the evaluation we can not
directly conclude that our observers are not influenced by the glaucoma disease or
low quality. In the evaluation, only manual correction was performed. Therefore, an
inter-observer difference can only appear in places that were corrected, i.e. the inter-
observer difference and the automated segmentation error are most likely correlated.
Only in the case that the automated segmentation error is not correlated to scans of
low quality or the glaucoma disease, the conclusion that observers are not influenced
by those criteria is valid. The correlation of the automated segmentation error with
low quality or glaucoma will be looked at in the next Section 3.5.
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Boundary Glaucoma Normal Low Qality High Qality
ILM 0.68 0.38 0.60 0.46
ONFL 2.42 2.88 2.61 2.68
IPL/INL 2.08 1.88 2.00 1.96
OPL/ONL 0.68 0.48 0.52 0.65
ELM/IP 0.33 0.06 0.06 0.33
RPE 0.19 0.09 0.04 0.24

Table 3.4: Mean absolute inter-observer differences for the manually corrected layer
boundaries among different subject groups and B-Scan qualities. The columns show
the mean absolute inter-observer difference of the layer positions in [µm] among
all observers. “Glaucoma” are the scans of preperimetric and perimetric glaucoma
patients, “Normal” the scans of healthy and ocular hypertension subjects. “Low
quality” depicts the half of the scans with low quality, “High quality” the half of
the scans with high quality.

Despite the high probability of a correlation between the inter-observer difference
and the automated segmentation error, we take a closer look at how the difference
between the observers is distributed along the A-Scan positions by the standard
deviation of the observer segmentations STDOl(r):

STDOl(r) =
1

#DB

∑
i∈DB

√
1

#O − 1

∑
o∈O

(Lo,i,l(r)− L̄i,l(r))2; (3.15)

where L̄i,l(r) is the observers’ mean position of layer boundary l on image i at A-Scan
position r. In Figure 3.8 the STDOl(r) is plotted for each segmented layer boundary.
The plots are split into two graphs, one for inner layer boundaries in Figure 3.8 a) and
one for the outer layer boundaries in Figure 3.8 b). Inner and outer does not resemble
the separation of inner segment and outer segment from the algorithm description of
Section 3.2, but is just a half-half partitioning of the layer boundaries for overview
reasons. To those experienced in OCT layer segmentations, the plots of the observer
standard deviations of the ONFL and, to a smaller extent, the IPL/INL boundary
resemble a familiar shape, namely that of the retinal or RNFL thickness or the blood
vessel density (BVD) among a circular scan dataset. Layer thicknesses are defined
by:

LT (r) = Louter(r)− Linner(r) (3.16)

where Louter(r) is the position of the outer layer boundary and Linner(r) the position of
the inner layer boundary of the respective layer at A-Scan position r. For the complete
retina, the outer layer boundary is the RPE and the inner layer boundary the ILM. For
the RNFL, the outer layer boundary is the ONFL and the inner layer boundary the
ILM. The mean thickness among the segmentation evaluation dataset of the RNFL
and retina are computed for the gold standard and included in Figure 3.8 a) and b)
respectively. The BVD denotes the percentage of images among the segmentation
evaluation dataset where a blood vessel is indicated on the author’s correction of
the automated blood vessel detection at a certain position. The BVD is drawn into
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Boundary BV Distrib. Retina thickn. RNFL thickn.
ILM -0.18 0.05 -0.21
ONFL 0.84 0.80 0.93
IPL/INL 0.73 0.88 0.82
OPL/ONL -0.12 0.46 0.02
ELM/IP 0.16 0.37 0.21
RPE 0.16 0.49 0.23

Table 3.5: Correlation of observer standard deviation along the A-Scan position r
with the blood vessel distribution (BV Distrib.), retina thickness (thickn.) and retinal
nerve fiber layer (RNFL) thickness. All correlations are significant with P < 0.001
except the correlation of observer standard deviation among the OPL/ONL boundary
to the RNFL thickness and the correlation of observer standard deviation among the
ILM boundary to the retina thickness. In both cases there is no correlation.

Figure 3.8 a). Indeed, the shapes of the observer standard deviations of the ONFL
and the IPL/INL boundary are similar to the BVD, the retina or RNFL thickness,
less so for the other layer boundaries. To quantify this similarity correlations can
be computed. These correlations are shown in Table 3.5. Almost every observer
standard deviation is correlated to the BVD, retina thickness and RNFL thickness
with P < 0.001 with 2 exceptions only. The correlation is especially strong for the
ONFL and IPL/INL boundary. As the three measures BVD, retina thickness and
RNFL thickness themselve are correlated (correlation of BVD to RNFL thickness is
0.81, BVD to retina thickness 0.58, and retina to RNFL thickness 0.83, all with P <
0.001), one may conclude that the observers differ most in either regions of high BVD
or large RNFL thickness. It is known from the literature that the blood vessel shadows
are a severe challenge to automated segmentation algorithms [Chiu 10, Golz 11] and
there is still no common rule to be found in the literature how to treat blood vessels
even in manual segmentations. It is therefore most likely that the blood vessels
are the reason for high inter-observer standard deviation, either directly due to a
different opinion on the correction or indirectly due to more segmentation errors at
this positions.

To conclude the evaluation on the observer corrections, their relation to the GS,
which was constructed from them, is investigated. Figure 3.9 shows visual examples of
the observers’ corrections and the resulting GS. Obviously, a layer boundary with only
few corrections leads to a high inter-observer agreement (see Figure 3.9 a)). Figure
3.9 b) is the scan with the second largest inter-observer difference for the ONFL
boundary. It can be seen that the observers treated the BV areas very differently.
The GS segmentation is a reasonable compromise. Figure 3.9 c) is a scan with very
large inter-observer difference for the IPL/INL boundary. Some observer corrections
are clearly mislead in BV regions, with the corrections been set to the ONFL or
very near to the OPL/ONL boundary, despite the clear instruction for this layer: “...
follow it (the IPL/INL) on both sides until you are near the blood vessel shadow and
then interpolate over the blood vessel region”. Nonetheless, the GS is reasonable.
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Figure 3.8: Observer standard deviation along the A-Scans. (a) The observer stan-
dard deviation for the inner layer boundaries plotted with the mean RNFL thickness
and the blood vessel density. (b) The observer standard deviation for the outer
boundaries plotted against the mean retina thickness. Note the different scales of the
y-axis of the graphs a) and b).
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(a)

(b)

(c)

Figure 3.9: Example images for inter-observer agreement. The layer boundaries are
not shown in their default color. Only one layer boundary is drawn on each scan,
with the 5 observer corrections in blue to green colors and the gold standard in
orange. The images are cut in vertical direction to show only the retina. (a) High
inter-observer agreement (IODOverall = 0.56µm), few corrections to the automated
segmentation. PPG eye, quality 18.21dB. The ONFL segmentations are shown. (b)
Low inter-observer agreement on the ONFL boundary (IODONFL = 10.23µm). OHT
eye, quality 29.00dB. (c) Low inter-observer agreement on the IPL/INL boundary
(IODIPL/INL = 4.19µm). PPG eye, quality 21.47dB.

The visual examples can give only a sample expression on the validity of the GS.
The absolute difference of an observer o to the GS for a layer l DOGo,l and the
similarly computed signed difference SDOGo,l give a more global indication:

DOGo,l =
1

#R ∗#DB

∑
i∈DB

∑
r∈R

|Lo,i,l(r)− LGS,i,l(r)| (3.17)

SDOGo,l =
1

#R ∗#DB

∑
i∈DB

∑
r∈R

Lo,i,l(r)− LGS,i,l(r); (3.18)

The results of the DOGo,l computation are shown in Table 3.6 and the results
of the SDOGo,l computation in Table 3.7. Both tables include the same measure
computed for the author’s correction, computed by replacing o by author in the
equations above. The DOGo,l are similar between the observers. For most layers, the
signs of the SDOGo,l values are distributed in a 2 to 3 fashion among the observers
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Boundary Obs.1 Obs.2 Obs.3 Obs.4 Obs.5 Author
ILM 0.43 0.30 0.36 0.35 0.31 0.35
ONFL 1.43 1.38 1.44 1.98 2.38 1.84
IPL/INL 1.30 1.06 1.15 1.30 1.59 1.71
OPL/ONL 0.44 0.25 0.25 0.46 0.40 0.71
ELM/IP 0.20 0.09 0.12 0.13 0.09 0.16
RPE 0.09 0.08 0.08 0.11 0.07 0.10

Table 3.6: Mean absolute difference of the manual correction by the observers (Obs.)
and the author to the gold standard in [µm].

Boundary Obs.1 Obs.2 Obs.3 Obs.4 Obs.5 Author
ILM -0.25 0.00 -0.02 0.02 0.20 0.04
ONFL -0.32 -0.80 -0.04 -1.40 1.64 -0.44
IPL/INL 0.03 -0.14 -0.03 -0.43 0.46 0.31
OPL/ONL 0.05 -0.02 -0.11 0.13 0.12 -0.12
ELM/IP -0.15 0.04 -0.06 -0.05 0.05 -0.07
RPE 0.03 0.02 -0.01 -0.04 -0.01 -0.03

Table 3.7: Mean signed difference of the manual correction by the observers (Obs.)
and the author to the gold standard (GS) in [µm]. A negative sign indicates that the
mean position of the layer is more to the inner side of the scan compared to the GS.

except for the ONFL layer boundary. Observer 4 placed the ONFL boundary too
much to the inner side of the scan and Observer 5 to the outer side compared to the
GS. The mean signed differences for the other 3 observers are small for the ONFL
layer boundary compared to the 2 extremes. This confirms the special opinion of these
two observers on the segmentation of ONFL layer boundary but also shows that the
GS is not influenced by the outliers and sticks to the majority of the observers, as
does the similarity of the DOGo,l and the distribution of signs of the SDOGo,l of
the other layers confirm the validity of the GS construction rule. The author’s DOG
and SDOG values only add to the conclusion drawn above. They are, except the
OPL/ONL boundary, never an extremum compared to the observers.

The summarized conclusions drawn from this section are the following: The ob-
server differences are highest in areas of high blood vessel density. The gold standard
construction rule formulated in Section 3.4 seems valid and reasonable. The au-
thor’s corrections can be seen as representative for the corrections that a single OCT
operator might carry out.
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(a)

(b)

(c)

Figure 3.10: Examples of successful automated segmentations. The images are cut
in vertical direction to show only the retina. (a) Scan of a healthy eye. Segmentation
error SEi = 0µm. Very high quality 40.31dB. (b) Scan of a preperimetric glaucoma
eye. Segmentation error SEi = 0.13µm. Very low quality 18.82dB. (c) Scan of
perimetric glaucoma eye. Segmentation error SEi = 0.03µm. High quality 24.19dB.

3.5 Automated segmentation evaluation and discus-
sion

The evaluation of the automated segmentation results includes visual examples of
the segmentation results, a brief look at the blood vessel segmentation, followed by a
comparison of the automated layer segmentation results to the gold standard. This
comparison is performed on the complete dataset, on scan groups and along the
A-Scan positions.

At first, a qualitative impression on the segmentation results is given by example
images in Figures 3.10, 3.11 and 3.12. Figure 3.10 shows successfull automated seg-
mentations from a) a healthy eye, b) a PPG eye, and c) a PG eye. The measured
scan quality is among the best in the dataset for the example 3.10 a) and among
the worst for 3.10 b). The segmented layer boundaries follow the contrast changes
inside the scan closely and the treatment of blood vessel regions is reasonable - a line
connecting the segmentation on the left and right side of the blood vessel shadow.
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(a)

(b)

(c)

Figure 3.11: Examples of automated segmentations with errors. The images are cut
in the vertical direction to show only the retina. Segmentation errors are marked
with white arrows. (a) Scan of a healthy eye. Segmentation error SEi = 1.7µm with
segmentation failures on the IPL/INL boundary. Low quality 20.47dB. (b) Scan of
an ocular hypertension eye. Segmentation error SEi = 1.77µm with segmentation
failures mainly on the ONFL and RPE boundaries. The failures on the RPE prop-
agate to the inner layers. Low quality 21.24dB. (c) Scan of a perimetric glaucoma
eye. Segmentation error SEi = 0.91µm with segmentation failures on the IPL/INL
boundary. Very low quality 17.64dB.

Moderate segmentation errors are visible in the examples in Figure 3.11 and
marked with a white arrow. Most errors appear on the ONFL and IPL/INL bound-
ary. The IPL/INL boundary has clear jumps in areas where it is barely visible to
the human eye as it can be seen in the examples a) and c). An energy minimization
approach similar to the ONFL segmentation could prevent these jumps and may be
investigated in future work. The error on the RNFL in the example b) is located in
the inferior quadrant of the scan with high blood vessel density and expected high
RNFL thickness. The segmentation was mislead by the preceding wrong positioning
of the IPL/INL and most likely by remaining speckle in the RNFL. A propagation
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(a)

(b)

Figure 3.12: Extreme failures of the automated segmentation. The images are cut
in the vertical direction to show only the retina. (a) Scan of a perimetric glaucoma
eye. Segmentation error SEi = 40.49µm. High quality 22.85dB. The intensities of
the layers and sclera are very different from other scans due to the positioning of the
retina at the outermost scan area (not visible in the cut of the image shown). (b)
Scan of a perimetric glaucoma eye. Segmentation error SEi = 17.18µm. High quality
26.70. The wavy retinal structure caused the algorithm failure.

of a segmentation error of the RPE to the inner layers is observed on the right side
of the scan in the temporal quadrant. The IP layer is highly reflective at this po-
sition and this leads to the error. The assumption on the parallelism of the RPE
and the inner layers are the reason for the error propagation. Segmentation errors on
the RPE are, however, very uncommon, as we will see later in this section. A final
remark has to be made on Figure 3.11 c), a scan of a PG eye with complete loss of
the RNFL between the inferior and temporal quadrants. The algorithm detected the
loss and remaining thin RNFL perfectly. The errors on the IPL/INL boundary did
not influence the ONFL segmentation.

There were 2 extreme failures of the automated segmentation in the segmentation
evaluation dataset, with one being a complete failure. This complete failue is shown
in Figure 3.12 a). The failure can be reasoned: The retina was positioned at the very
outer end of the scan area, contrary to the operating guidelines for the HE Spectralis.
One can only guess that this was the only possibility to get a scan from the glau-
comatous eye. This positioning of the retina lead to an intensity distribution along
the A-Scans very different from the other scans. The outer layers and the sclera are
much brighter than usual which caused the segmentation error, as even the IS/OS
separation failed in parts. The error in Figure 3.12 b) is due to a violation of one of
the algorithm’s basic assumptions: The wavy structure of the retina caused the RPE
detection to fail. As no further patient information beside the glaucoma diagnosis is
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BV correction 0-2 2-4 4-6 6-8 8-10 >10
#Img 79 31 7 1 0 2

Table 3.8: Number of B-Scans from the segmentation evaluation dataset with the
respective fraction of A-Scan blood vessel labels corrected. The values in the header
are in [%], with the lower boundary included and the higher excluded.

available for this work, one might only guess the presence of a disease in addition to
glaucoma. Nevertheless, we accepted scans like Figure 3.12 a) and b) on full purpose
for this work and also for the segmentation evaluation. They represent scans from
daily clinical practice that do not always favor perfect results in the evaluation of a
segmentation algorithm. However, we will comment on how these two single scans
influence the evaluation and where results have therefore to be judged carefully. Both
extreme failure scans are from the same patient group (PG) and have the same scan
quality (high), but the segmentation errors can not be reasoned with either of these
two classifications.

While the correction of the automated blood vessel segmentation results was only
performed by the author, some insight can be gained in how useful the results are
for the following segmentation steps, as the blood vessel positions are used in each
of them. The blood vessel segmentation only assigns a label to an A-Scan, if the
A-Scan is at a blood vessel position or not. During the manual correction, 2.13%
of these labels had to be corrected on the segmentation evaluation dataset. Beside
this global number, the distribution of this error among the dataset is a more mean-
ingful measure. It is shown in Table 3.8. The majority of scans did not need major
corrections to the blood vessel positions with few exceptions. On two scans, more
than 10% of the labels were wrong. One was the extreme failure shown in 3.12 b)
with the wavy retina. On the other scan, severe speckle noise lead the thresholding
to assign blood vessel labels to almost half of the A-Scans. This behavior could be
prevented by a more speckle-sensitive algorithm without a fixed threshold parameter.
However, the segmentation results were not that much affected, with segmentation
errors being only minor and not due to the automated blood vessel labeling. Overall,
by visual inspection of the results, it turned out that mostly large blood vessels, as
stated before, are not found.

The layer segmentation error of an image i and layer boundary l can be quantified
by the mean absolute distance of the automatically segmented layer boundary to the
gold standard:

SEl,i =
1

#R

∑
r∈R

|Lautom,i,l(r)− LGS,i,l(r)|; (3.19)

The segmentation error SEl for a specific layer l can be computed as the mean of the
SEl,i among the dataset or a subgroup of the dataset:

SEl =
1

#DB

∑
i∈DB

SEl,i; (3.20)

In almost the same manner, an overall measure SEi for a specific image i is created
by the average of SEl,i among all layer boundaries, and an overall measure SEGroup
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Group ILM ONFL IPL/INL O/O ELM/IP RPE All
Overall 1.07 2.84 2.56 0.61 0.58 0.51 1.36
HQ 1.65 3.40 2.99 0.97 1.10 0.95 0.95
LQ 0.49 2.28 2.14 0.25 0.07 0.07 0.07
Normal 0.33 2.75 2.58 0.25 0.13 0.15 0.15
Glaucoma 1.81 2.93 2.55 0.97 1.04 0.87 0.87
Healthy 0.32 2.43 2.44 0.23 0.17 0.21 0.21
OHT 0.33 3.07 2.73 0.27 0.08 0.08 0.08
PPG 0.83 1.28 1.59 0.24 0.07 0.07 0.07
PG 2.80 4.58 3.50 1.70 2.01 1.67 1.67
N & HQ 0.08 2.56 2.72 0.26 0.18 0.22 0.22
N & LQ 0.57 2.94 2.44 0.24 0.07 0.07 0.07
G & HQ 3.21 4.24 3.25 1.68 2.01 1.67 1.67
G & LQ 0.42 1.62 1.85 0.26 0.07 0.06 0.06

Table 3.9: Mean absolute difference, i.e. the segmentation error SE of the automat-
ically segmented layer boundary positions to the gold standard for all segmentation
evaluation B-Scans and subgroups of the dataset. The abbreviations are: OPL/ONL
boundary (O/O), High quality scans (HQ), low quality scans (LQ), healthy and oc-
ular hypertension (OHT) subjects (Normal, N), preperimetric (PPG) and perimetric
glaucoma (PG) patients (Glaucoma, G). The possible combinations of the groups
N/G and LQ/HQ contain 30 subjects each. “All” is the mean over all layer bound-
aries. Values are given in [µm].

for the complete dataset or subgroup of the dataset by the average of SEGroup,l among
all layer boundaries, were Group is a specific subgroup of images of the segmenta-
tion evaluation dataset with a certain property. Naturally, the segmentation error
measurements can be made for combinations of subgroups and layers. An example
equation is the segmentation error of the ONFL on normal (N) eyes SEONFL,N :

SEONFL,N =
1

#N

∑
i∈N

SEONFL,i (3.21)

where N is the subgroup of images in the segmentation evaluation dataset with di-
agnosis N (healthy H and ocular hypertension OHT combined), #N is the number
of these images and SEONFL,i is the segmentation error of the ONFL for the image
i. Table 3.9 summarizes the segmentation error SE for the complete segmenta-
tion evaluation dataset and the different layers and subgroups of the dataset. The
subindex to SE can be added from the context. The ONFL boundary segmentation
resulted in the largest segmentation error of SEONFL = 2.84µm, closely followed by
the IPL/INL boundary SEIPL/INL = 2.56µm. This is of no surprise, as these two
layer boundaries are the greatest challenge in retinal layer segmentation. All other
layer segmentations performed better, with the RPE being the layer with the smallest
error SERPE = 0.51µm.

Before discussing the subgroups of the segmentation evaluation dataset, we will
look at the distribution of the segmentation error SEl,i among the whole dataset
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Boundary 0-2 2-4 4-6 6-8 8-10 >10
ILM 113 2 2 1 0 2
ONFL 70 31 6 7 2 4
IPL/INL 69 35 7 4 0 5
OPL/ONL 117 1 0 0 0 2
ELM/IP 117 1 0 0 0 2
RPE 117 0 1 0 0 2
Overall 110 6 2 0 0 2

Table 3.10: Number of B-Scans from the evaluation dataset with the segmentation
error SEi,l within a certain range. The values in the header are in [µm] with the
lower boundary included and the higher excluded.

in Table 3.10. It can be seen that the segmentation error is not equally distributed
among the scans. A large fraction, more than 100 of the 120 scan in the segmentation
evaluation database, has a segmentation error below 4µm for any layer. The overall
error is smaller than 2µm for 110 of the images. Errors on the ILM, OPL/ONL,
ELM/IP and RPE boundary are very seldom and errors on the ONFL and IPL/INL
boundary are more common. Each layer boundary has at least 2 images with a seg-
mentation error above 10µm. With one exception, the ILM, these always include
the examples with extreme errors as shown in Figure 3.12. In fact, these two scans
contribute, for example, 35.33% to the overall, 25.42% to the ONFL and 81.56% to
the RPE error. As mentioned above, the two failure scans belong to the same scan
subgroups, high quality and PG scans. With the knowledge of this segmentation
error distribution and the two extreme failures, we will look at the results for the
subgroups also shown in Table 3.9. It is no surprise that the averaged numbers show
a higher segmentation error for high quality and PG eyes. The segmentation errors
for the OPL/ONL, ILM/EP and RPE are near to non-existent for the other sub-
groups. To find out whether there truly is a connection between quality or glaucoma
diagnosis and the segmentation error, the correlation of the membership of an image
in these groups with its segmentation errors was computed. No correlation yielded
any significance (P < 0.01). The conclusion is that segmentation error differences in
Table 3.9 are due to random effects in the segmentation evaluation database, but not
due to algorithm design. The algorithm provides similar segmentation error results
on scans of high or low quality, and on scans of normal and glaucomatous eyes.

While the segmentation error SE defined as the mean absolute difference of the
automated segmentation to the gold standard gives insight on how much error the
automated segmentation makes on the evaluation database, the signed segmentation
error SSE defined as the mean signed difference of the automated segmentation to
the gold standard shows in which direction the layer boundaries are set wrongly to a
larger extent:

SSEl,i =
1

#R

∑
r∈R

Lautom,i,l(r)− LGS,i,l(r); (3.22)

The results are summed up similarly to the SE results of Table 3.9 in Table 3.11.
On the whole dataset, the ONFL and IPL/INL boundaries are more often positioned
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Group ILM ONFL IPL/INL O/O ELM/IP RPE All
Overall 0.69 -1.23 -1.46 0.30 0.12 0.22 -0.23
HQ 1.12 -0.75 -1.33 0.56 0.23 0.43 0.43
LQ 0.25 -1.71 -1.59 0.04 0.01 0.01 0.01
Normal 0.12 -2.15 -2.15 0.01 0.05 0.04 0.04
Glaucoma 1.25 -0.30 -0.77 0.59 0.19 0.40 0.40
Healthy 0.28 -1.81 -1.92 0.05 0.10 0.10 0.10
OHT -0.04 -2.50 -2.37 -0.04 -0.01 -0.02 -0.02
PPG -0.15 -1.03 -1.03 0.06 0.05 0.05 0.05
PG 2.65 0.42 -0.51 1.12 0.33 0.74 0.74
N & HQ 0.06 -1.97 -2.25 0.02 0.12 0.11 0.11
N & LQ 0.18 -2.33 -2.04 -0.00 -0.03 -0.03 -0.03
G & HQ 2.19 0.47 -0.42 1.10 0.34 0.75 0.75
G & LQ 0.31 -1.08 -1.13 0.08 0.04 0.05 0.05

Table 3.11: Mean signed difference (SSE) of the automatically segmented layer
boundary positions to the gold standard for all segmentation evaluation B-Scans
and subgroups of the dataset. A positive difference indicates that the automatically
segemented boundary positions is in average set wrongly to the outer Z-direction (i.e.
too low in the B-Scan image), a negative differences indicates the average position
wrongly set to the inner Z-direction. Abbreviations and further information see Table
3.9.

wrongly to the inner side of the scan. The separated evaluation on subgroups gives
further insight into this behavior. The wrong positioning of the ONFL and IPL/INL
boundaries to the inner side seems to be more pronounced on normals compared to
glaucoma patients, i.e. subjects with a larger RNFL. Indeed, the computed correla-
tions of the SSEl,i with glaucoma (PPG and PG) or the single PG diagnosis for the
ONFL and IPL/INFL are higher for the SSE (in the range of 0.15 to 0.2) than for
the SE (near to 0). However, the correlation again did not yield any real significance
(P < 0.01) for any layer, with the P value of the SSE to glaucoma correlation for
the ONFL and IPL/INFL boundary being just below 0.1. All other numbers of the
Table 3.11 are also not considered to add more information. Of course, there is the
possibility that the significance of the correlations would increase, i.e. P would de-
crease, with a larger evaluation database. It has to be pointed out that the number of
scans included in our evaluation is in the same magnitude and comparable to almost
all other works published about retinal layer segmentation (see literature overview
Table B.1 and following). This shows that conclusions drawn out of pure overall
segmentation error results on scan groups have to be taken with a grain of salt when
no correlation and corresponding significance is given and the database is only in the
size of about a hundred, e.g. in [Rath 14].

The segmentation error along the A-Scans gives insight how the errors are dis-
tributed locally:

SEl(r) =
1

#DB

∑
i∈DB

|Lautom,i,l(r)− LGS,i,l(r)|; (3.23)
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Figure 3.13: Segmentation error along the A-Scans SEl(r). (a) The segmentation
error along the A-Scans for the ONFL and IPL/INL boundaries plotted with the
blood vessel density. (b) The segmentation error along the A-Scans for the other
segmented boundaries. Note the different scales of the y-axis of the graphs a) and b).
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Boundary BV Distrib. Retina thickn. RNFL thickn. Obs. diff.
ILM 0.07 0.25 0.12 0.61
ONFL 0.64 0.82 0.83 0.74
IPL/INL 0.31 0.73 0.54 0.42
OPL/ONL -0.20 0.31 -0.03 0.49
ELM/IP -0.02 0.40 0.20 -0.06
RPE 0.02 0.41 0.22 0.08

Table 3.12: Correlation of mean absolute position difference to the gold standard of
the automatically segmented layer positions SEl(r) along the A-Scan position r with
the blood vessel (BV) distribution, retina thickness (thickn.), retinal nerve fiber layer
(RNFL) thickness and the mean absolute observer difference (Obs. diff) to the gold
standard (DOGl(r)). All correlations with an absolute value above 0.1 are significant
with P < 0.001.

The SEl(r) is plotted for the ONFL and IPL/INL boundary in Figure 3.13 a). In
addition, the blood vessel distribution as defined in Section 3.4 is shown as a rep-
resentative for the correlated measures blood vessel distribution, RNFL and retina
thickness. The SEl(r) for the other layers is plotted in Figure 3.13 b). The cor-
relations between the blood vessel distribution, the RNFL and retina thickness and
the segmentation error along the A-Scans are given in Table 3.12. The segmenta-
tion errors of the ONFL and IPL/INL are significantly (P < 0.001) correlated to all
3 measures along the A-Scan, especially to the retina and RNFL thickness. From
that we can conclude that either high RNFL thickness or the blood vessels are the
main challenges to the automated segmentation of the ONFL and IPL/INL layers,
as expected. The segmentation error of the other layers seems to be more evenly
distributed in Figure 3.13 b), but there are significant correlations to the thickness
of the complete retina. A high retina thickness seems to impair the segmentation
results. One possible explanation is an increased chance that a larger quantitative
amount of remaining speckle after denoising inside the retina leads to more false layer
boundary detections.

A last point of interest is how the segmentation error of the automated segmen-
tation relates to the observers. We therefore compute the mean absolute observer
difference to the gold standard along the A-Scans:

DOGl(r) =
1

#O ∗#DB

∑
o∈O

∑
i∈DB

|Lo,i,l(r)− LGS,i,l(r)|; (3.24)

This measure is similarly constructed as the segmentation error SEl(r) and tells how
far the average observer layer boundary position is from the gold standard. The
SEl(r) and DOGl(r) values for the ONFL are plotted in Figure 3.14 a) and for
the IPL/INL in Figure 3.14 b). These two layers are chosen as examples as they
exhibit the highest segmentation error. By no surprise, the measures are correlated,
as shown in Table 3.12 in the last column, as observer differences to the gold standard
may appear only at positions were at least two observers corrected the automated
segmentation. It is a surprise, however, that the average observer difference to the
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gold standard is roughly in the same order of magnitude as the segmentation error,
as Figure 3.14 shows. For the ONFL, the disagreement of the observers with the
gold standard is in some positions even higher than the segmentation error, and for
the IPL/INL the segmentation error is in most positions not higher than twice the
observer difference to the gold standard. The automated segmentation therefore is
not much worse in its results than the average observer, even if the observer should
only correct the automated segmentation results.

To conclude the evaluation of the automated segmentation, the findings can be
summarized as follows: The ONFL and IPL/INL yield the highest segmentation
errors. The other layers have errors almost exclusively on 2 scans from the dataset,
that let the segmentation fail due unexpected properties of the image content. There
is no significant correlation between the segmentation error and either scans of bad
quality or glaucomatous eyes. The ONFL and IPL/INL are more wrongly positioned
to the inner side of the scan. But even the automated segmentation results of these
two layers with the highest segmentation error are evaluated not much worse than
the average observer compared to the gold standard.

3.6 Outlook
The presented automated retinal layer segmentation algorithm on circular OCT B-
Scans has been extended to volume scans, and preliminary results were published at
a conference [Maye 11]. The volume segmentation algorithm is intended for the use
on volumes around the ONH.

The averaging and some layer smoothing steps were performed in 3D, while all
other steps were performed on individual B-Scans. Some of the general algorithm
assumptions do not hold in the case of a linear B-Scan out of a volume, i.e. while we
still assume the RPE boundary is not disrupted, has a simple shape and this shape
can be modeled by a polynomial with a rather low degree, i.e. below or equal to 5, a
simple L2 norm polynomial fit will not provide adequate results for outlier detection
as the ONH leads to massive outliers that prevent a good L2 norm polynomial fit.
The L2 polynomial fit was therefore replaced by a RANSAC fit of a polynomial with
an L0 norm as an error measure. The L0 norm is 1 if the distance of a boundary
position is within a certain threshold to the polynomial, and 0 otherwise. A similar
RANSAC fit was used for outlier detection on the inner layers, as the assumption that
they are roughly parallel to the RPE is also not true for volumes. A step to find the
ONH position was introduced after the RPE detection. This ONH detection works
on the en-face view of a slice of pixels above the RPE and finds the ONH by pre-
processing the en-face view with thresholding, followed by morphological operators
and computing the center of gravity afterwards. The ONH positions are invalidated
for all layer boundaries after the ONH detection. Most of the parameters from the
circular B-Scan method had to be adapted for volume scans.

The data available are volume scans from one eye of 3 healthy subjects and 7
glaucoma patients, with varying numbers of B-Scans and A-Scans per B-Scans. These
are too few for a resilient evaluation. Preliminary results (taken from [Maye 11]) were
that the percentage of the RNFL thickness with no more than a 10µm thickness
derivation from a manually corrected result was 11% on the glaucoma volumes and
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Figure 3.14: Segmentation error SEl(r) and mean absolute observer difference to
gold standard DOGl(r) along A-Scan positions r. (a) ONFL boundary position. (b)
IPL/INL boundary position.
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4.4% on volumes of normal subjects. Two example segmentation results, one from a
normal and one from a glaucomatous eye are shown with the corresponding RNFL
thickness maps in Figure 3.15.

While results of the volume segmentation extension of the proposed algorithm
were promising, the computation time, at least of the Matlab implementation, is far
too long for a use in daily clinical practice. In addition, graph-based approaches
have shown their validity and good applicability on OCT data, be it for 2D or 3D
segmentation. In the author’s opinion, the graph-cut-based methods proposed in
[Anto 13, Dufo 13, Lang 13, Cara 14] provide the best base for future research, as they
are algorithmically compact, most easily applicable to volume data and allow for fast
computation times. Dynamic programming as used by Chiu et al. [Chiu 15] is as
much promising, but lacks the ability for an easy 3D extension.

The use of model-based approaches is suboptimal in the case of segmenting scans
of glaucoma patients. Models are, up to now, always built upon data of healthy
subjects. This may lead to more segmentation errors on scans of glaucoma patients,
as shown by the only publication known to the author that was based on a model
but used glaucoma data in the evaluation [Rath 14]. Models could include glaucoma-
tous eyes, but the forms of glaucoma defects in the retina and their progression are
manifold [Leun 12] and models would need a huge database to built on to capture the
variety of the layer structure change of glaucomatous eyes. However, the possibility
to directly draw a glaucoma score or quality measure of the segmentation from the
derivation of the segmentation from the model as proposed by Rathke et al. [Rath 14]
is exceptionally well thought and this idea deserves future attention.

One of the most interesting ideas for retinal layer segmentation was published
in [Chiu 15] and [Srin 14a]. Before the actual segmentation, the content of the scan
is preclassified, e.g. in [Chiu 15] regions of fluid-filled edema of DME patients are
detected before the actual segmentation and in [Srin 14a] the number of layers to
segment on scans of mice eyes is identified. These approaches could be thought
further for daily clinical use: A classification step based purely on image content
or a simple and robust retina segmentation determines the presence of diseases. A
suitable segmentation algorithm is chosen based on the classification result, e.g. a
model can be utilized in the case of a normal subject, complete RNFL loss has to be
taken into account for glaucoma patients, and fluid filled regions or other structures
deviating from normal shape are identified for AMD and DME patients before the
actual layer segmentation.

In this chapter, we presented a retinal layer segmentation algorithm to segment
5 layers or layer groups on circular B-Scans around the ONH of normal subjects and
glaucoma patients. Its validity was proven in an extensive evaluation. Retinal layer
segmentation is only the first step in building an automated glaucoma classification
system or glaucoma score. In the next Chapter 4, we make use of the layer segmen-
tation by computing features from it that may discriminate between normal subjects
and glaucoma with the help of a classifier.
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(a) (b)

(c) (d)

Figure 3.15: Example volume segmentation results: (a) B-Scan from a volume scan of
a normal subject. The automated layer segmentations are drawn. (b) Corresponding
RNFL thickness map of the normal subject. The position of the B-Scan in a) is
marked. (c) B-Scan out of a volume scan of a glaucoma patient. (d) Corresponding
thickness map to (c). Color code of the thickness map: Pure green (thick RNFL >
150 µm), pure yellow (RNFL = 75 µm), red (thin RNFL).
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Chapter 4

Glaucoma classification

Recalling the standard pattern recognition pipeline presented in the introduction
Section 1.4 and in Figure 1.6 we have just taken the first, but most crucial step, in
pre-processing of the data. Circular OCT scans are transformed to thickness mea-
surements of retinal layers. What follows in this chapter are all further processing
steps required for a complete pattern recognition pipeline that yields a classification
result. First, the thickness measurements are further processed by a focus and age
normalization. Details are given in Section 4.2. Out of the thickness profiles of the 5
segmented layers and the complete retina, as well as the blood vessel positions, vari-
ous features are computed. The features are not limited to common mean, minimum
and maximum values, but include ratios and principal component analysis (PCA)
features. We have a closer look, especially at the PCA features, in Section 4.3. The
remainder of the pattern recognition pipeline is built up on basic methods for fea-
ture selection and classification. “Forward selection and backward elimination” is the
feature selection method, and three widely used classifiers are compared. They are
briefly introduced in Section 4.4. This work does not focus on getting the best classi-
fication result at any cost, but rather evaluates how the choices made in building up a
classification system influence the result, i.e. not only the classification accuracy, but
also, for example, the feature selection. The decisions that have to be made for a final
classification system are: The dataset is labeled with 4 diagnoses. What is the most
interesting classification task that can be constructed out of these diagnoses? Do we
utilize thickness normalization? What classifier is chosen? Does a manual correc-
tion of retinal layer segmentation results from an observer improve the classification,
or can we rely on the automated result? Combining every possible answer to these
questions builds up a huge evaluation parameter space. Therefore, in Section 4.5 on
the evaluation, first the evaluation parameter space is structured in a meaningful way
(Subsection 4.5.1) and the results and necessary discussions are presented step by step
in Subsections 4.5.2 to 4.5.5. For all the classification experiments in the evaluation
section, a 10-fold cross-validation on the data is used to split it into disjoint training
and test samples. The cross-validation rule that training and test data do not in-
fluence each other is violated three times during the computation and normalization
of the features, i.e. by performing calculations over the complete dataset. These
violations of the cross-validation rule are explicitly mentioned and reasoning why
classification results are not affected are given in the respective subsections. Finally,
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a glaucoma score constructed from the classification results is proposed in Section 4.6.
An outlook how a glaucoma classification system can be further improved is given
in Section 4.7. But, first of all, before the classification process, its properties, and
results are described, the novelty of the approach is shown by an overview of the
published work in related research fields in the following Section 4.1.

4.1 State of the art

The diagnostic power of OCT for detecting glaucoma and its progression was proven
early with prototype and the first available commercial TD-OCT systems [Bowd 01,
Aydi 03, Gued 03]. With the increasing placement of OCT systems in clinics, a great
number of publications have investigated the reliability, reproducibility and possible
operator errors of measurements, comparisons of different commercial systems, and
the relation of measurements to age, ethnic groups and sex. The invention of FD-
OCT increased the publication count once more: Various scan protocols and differing
segmentation methods built-in by the manufacturers have to be validated for daily
clinical use. Publications on the glaucoma diagnostic capability of OCT measure-
ments are just as numerous. The majority of works in this field does focus on the
correlation of a single measurement parameter, e.g. a mean layer thickness, with the
disease. To name just a few examples: Polo et al. [Polo 08] used a Zeiss Stratus OCT
system to measure RNFL thickness and papilla parameters and investigated the glau-
coma discrimination ability of measurements computed over quadrants. Vizzeri et al.
[Vizz 09] showed with case studies that local RNFL loss is visible on the printout of
3 commercial available OCT systems. Multiple publications compare the diagnostic
value of the standard mean RNFL thickness obtained from the 3.46mm scan circle
with other methods [Leun 10b, Na 11, Hwan 12, Na 12]. The overall outcome is that
measures in the macula region are not as discriminative as the standard circle for
glaucoma and volume measures around the ONH increase diagnostic performance.

In this work, we do not look at a single parameter, as for example the mean RNFL
thickness, but at a bulk of parameters, the features computed from the layer thickness
profiles. Automated algorithms should select diagnostically relevant ones and com-
bine them to a single decision. There are only few publications for the specific task
of glaucoma detection from OCT data with a classifier, but glaucoma classification
was investigated on other modalities before. Especially visual field tests for the eye
function, that do not image structure directly, have a history in being the basis of
glaucoma classification systems. The numerical visual sensitivity plot with 53 loca-
tions combined with age is usually used as the feature set. Goldbaum et al. [Gold 02]
compared several classifiers, e.g. linear discriminant analysis (LDA), support vector
machines (SVM) and Bayesian classifiers of which the assumed feature probability
distribution is a mixture of Gaussians (MoG). On a PCA-reduced set of features,
i.e. the 53 visual field features were reduced to 8 dimensions, the MoG classifier
performed best. Sample et al. [Samp 02] not only used the classification approach to
classify current VF data to a diagnosis, but to predict glaucomatous change. Again,
several classifiers like SVM and MoG were compared. The machine learning classifiers
detected abnormalities in VF tests earlier than traditional methods. This result was
confirmed by Wroblewski et al. [Wrob 09]. They proved that SVM classifiers have an
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accuracy of 75% in detecting glaucoma suspects and pre-perimetric glaucoma. Given
that the definition of pre-perimetric glaucoma is that no VF defects are exhibited,
this result proves that classifiers can detect subtile changes before a defect is observed
on the sensitivity plot by humans. Another remarkable approach of this work is the
usage of a 2-stage classification: The VF tests were first classified into 3 diagnoses,
ranging from normal, suspect and preperimetric glaucoma to glaucoma. The later
two classes were then split into a refined diagnosis in a second classification stage. A
large database with more than 2000 samples allowed for this detailed classification.
A glaucoma score was proposed. Several other classification works have been based
on VF data since then, e.g. Goldbaum et al. proposed a glaucoma progression score
for VF data [Gold 12] and Bowd et al. combined SLO and VF data, i.e. structural
and functional measurements for predicting glaucoma progression [Bowd 12].

Eye imaging modalities beside OCT that measure or image structure were also
used to classify for the glaucoma disease. Swindale et al. proposed a glaucoma
probability score (GSP) for the Heidelberg Retina Tomograph (HRT) in [Swin 00].
Features are generated by a parametric model fitted to the shape of the tomographic
HRT data. The parameters of the model are used as the features. The ability of
the GPS to discriminate normal subjects from glaucoma patients and to predict
glaucoma progression was validated in multiple publications, e.g. [Alen 08, Masl 15].
HRT printout parameters were the features for a SVM classifier in [Zang 04]. For
feature selection, “Forward selection and backward elimination” was used, as it is also
proposed in this work. An 0.99 area under the receiver operating characteristic (ROC)
curve was achieved for discriminating healthy eyes from eyes with early to moderate
glaucomatous visual field damage. Asakoa et al. [Asao 14] used a random forest
classifier on HRT parameters. The possible features from the imaging modalities like
SLO, HRT and fundus imaging were expanded by works that were not based on the
manufacturer’s built-in parameters, which are usually based on segmentations on the
data, but derive features from the images directly. Bock et al. [Bock 10] were the
first to derive image features directly from fundus images without a segmentation.
Non disease-relevant variations like illumination inhomogenities were removed in a
pre-processing stage and the preprocessed images were then directly compressed by a
PCA transform to gain a 30 dimensional feature vector for the glaucoma classification.
In additon also fast Fourier transform and spline coefficient features were used. Dua
et al. [Dua 12] and Mookiah et al. [Mook 12] followed a similar approach by using
features derived from a wavelet transformation of fundus images. Zhu et al. [Zhu 14]
computed shift invariant wavelets and used a kernel PCA with a non-normalized
isotropic Gaussian kernel on combined SLO/HRT images to compute features directly
out of the image data to detect abnormalities.

Similar to fundus, SLO and HRT images, OCT images show structure. But not
only en-face views of the retina (fundus images, SLO) or topology (HRT), but also
the depth layer structure is imaged. Layer segmentation algorithms were early intro-
duced in commercial systems to derive diagnostic parameters, e.g. mean layer thick-
ness values. These parameters provided by the commercial OCT systems are taken
as features in all the published works on glaucoma detection from OCT data. The
first two are from Burgansky et al. [Burg 05] and Huang et al. [Huan 05]. Both used
the printout parameters the Zeiss Stratus TD-OCT provided as features and tested
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multiple classifiers like decision trees, SVM, Mahalanobis distance to the healthy and
patient feature distributions, LDA and artificial neural networks (ANN). Burgansky
et al. reported that the SVM machine was the best classifier with 0.92 area under
the receiver operating characteristic (ROC) curve. Huang et al. even had a 0.991
area under the ROC with the decisions made according to Mahalanobis distances.
These impressive numbers can be explained with the limited data of both studies:
All glaucoma patients already had visual field loss, similar to the data in the HRT
glaucoma classification study [Zang 04] mentioned earlier. After these initial publica-
tions based on TD-OCT data, the next relevant work was based on FD-OCT data,
by Baskaran et al. [Bask 12]. An extensive database similar in size to the one uti-
lized in this work with similar diagnoses (healthy, mild and moderate glaucoma) was
the basis for the classification with LDA and classification-and-regression-tree clas-
sifiers. Again, the features used were parameters provided by a commercial system,
the Zeiss Cirrus OCT. The classifiers outperformed the single parameters in their
diagnostic capability. A similar method was proposed by Mwanza et al. [Mwan 13]
using parameters from the Zeiss Cirrus OCT and a logistic regression classifier. Both
publications rejected scans with poor image quality in their database and Mwanza et
al. also rejected scans with segmentation errors. While not being aimed at glaucoma
classification but multiple sclerosis (MS), the work of Garcia-Martin et al. [Garc 12]
should be mentioned. Multiple mean values of the RNFL thickness profile from the
HE Spectralis were used as features for LDA classification. Scans with poor quality
were rejected, but the authors explicitly mention the problem that in daily clinical
practice this is not always feasible. As mentioned in Chapter 2 we use all the data
in the database regardless of quality. The scan quality does not impact the proba-
bility of a segmentation error for the presented algorithm. Scans with segmentation
errors are not excluded from the classification experiments, but it is evaluated later
on whether the correction of these errors affects the classification results.

Some works that classify on OCT data have also to be mentioned: Qi et al.
[Qi 10] use image features, namely intensity and speckle distribution, as well as stripe
orientation, to find dysplasia in Barrett’s esophagus on endoscopic OCT images. Liu
et al. [Liu 11] also classify on texture and shape features computed directly from
OCT image data. The images are grouped to macular pathologies: Macular edema,
macular hole and AMD. Zhang et al. [Zhan 13] derive a virtual VF chart from RNFL
and GC/IPL thickness features of OCT scans with linear regression and prove that
they are as sensitive for glaucoma detection as real VF data. Finally, Belgith et
al. [Belg 15] detect glaucomatous change on intensity distribution change maps, i.e.
they also use the image data directly. An overview over all the published research on
classification tasks from OCT data known to the author is given in Tables B.6 and
B.7 in the Appendix.

The classification system presented in this work is similar to the ones in [Burg 05,
Huan 05, Bask 12, Mwan 13, Garc 12] with respect to that retinal layer thickness pro-
files, or features computed from those are the input to the classifier. However, there
is a major difference: The former works had to use the parameters that are provided
by a commercial OCT system and thus had no access to the complete thickness pro-
files of layers, with the exception of Garcia-Martin et al. [Garc 12], but they only
computed mean features from the RNFL profile. By implementing a segmentation
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algorithm, this work is not bound to the restrictions and limitations of commercial
systems. Features can be computed for multiple layers, even if their significance for
the glaucoma disease is doubtful. Furthermore, not only common mean features are
computed, but various types, including ratios and PCA features. No human expert
decides on the discriminative value of a feature, but algorithms, the desicion of which
is based on training data, i.e. we present a “data mining” method for the glaucoma
classification challenge from OCT data.

4.2 Layer thickness normalization

The basis for the classification are retinal layer thickness profiles. The thickness
profiles are computed out of the positions of the inner and outer segmented boundaries
of the respective layer, as given in Equation 3.16. From the 6 segmented boundaries
5 thickness profiles and in addition the whole retinal thickness are generated:

LTRetina(r) = LRPE(r)− LILM(r);

LTRNFL(r) = LONFL(r)− LILM(r);

LTGCL+IPL(r) = LIPL/INL(r)− LONFL(r);

LTINL+OPL(r) = LOPL/ONL(r)− LIPL/INL(r);

LTONL+ELM(r) = LELM/IP (r)− LOPL/ONL(r);

LTIP+OP+RPE(r) = LRPE(r)− LELM/IP (r);

(4.1)

The blood vessel indices are an additional seventh “virtual” layer thickness LTBV ,
i.e. they do not reflect real thickness values but are treated as one. The thickness
profiles can be further processed in two ways. First, Bendschneider et al. [Bend 10]
measured the mean RNFL thickness in healthy eyes and found that it decreases
with age. This leads to the idea to perform a novel age normalization of the
thickness profiles. Second, the HE Spectralis scans the circle around the ONH with
a fixed opening angle of the laser beam. Given the radius of the curvature of the
corneal surface of the eye scanned, which may differ from eye to eye, it computes the
assumed ocular magnification factor and the spacing of A-Scans in the R-direction.
To compensate for these different assumed spacings of the A-Scans for each eye is a
newmagnification normalization. The two layer thickness normalization methods
are detailed in the following:

Age normalization: Bendschneider et al. [Bend 10] used Spectralis RNFL seg-
mentations to relate the overall, quadrant and mean RNFL thickness in 32 segments
to age. Given the segmentation data in this work, this approach can be extended: All
segmented layer groups can be investigated. In Figure 4.1, the mean layer thickness
of the 453 healthy eyes of the classification database is shown for 3 example layer
groups in relation to age. The manually corrected data is used. A least-squares line
fit through all the data samples is shown in addition to single data samples. It can
be observed that not only the RNFL, but also the other layer groups become thinner
with age. The fitted lines and thus the thinning correlate with the data samples with
P < 0.01 for all layer groups and the retina.
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Figure 4.1: Mean thickness of the RNFL, ONL+ELM and GCL+IPL of healthy eyes
in relation to subject age. The lines are computed by an least-squares fit through all
the data samples of the respective layer on manually corrected data. Mean over all
data samples RNFL thickness: 94.60± 9.20µm, mean ONL+ELM thickness: 68.49±
6.70µm, mean GCL+IPL thickness: 45.77 ± 3.95µm. All line fits correlate with the
data samples with P < 0.01.

To quantify the age-related thinning further, least-square line fits with respect
to age are computed not only on the overall mean thickness as shown in Figure
4.1, but on the mean thickness of 32 segments along the A-Scans, as proposed by
Bendschneider et al. [Bend 10]. The segments are numbered from the left side of the
scan, i.e. the middle of the temporal quadrant, to the right from 1 to 32. The fitted
lines can be represented with an offset and gradient value:

L̄T i(a) = oi + gi · a; (4.2)

where L̄T i(a) is the line fit through the mean values of healthy eyes for the respective
layer (the layer subindex is omitted in this and following equations for better readabil-
ity) and segment number i, i.e. it can be interpreted as a representive mean thickness
value for age a. The offset value is oi and the scalar gradient gi. The gradient gi,
i.e. the expected change with respect to age is of most interest. If it is negative, the
layer thins with age. The descriptive statistics (mean, standard deviation, minimum
and maximum value) of the thickness gradients gi in the 32 segments are given in
Table 4.1. Except for the RNFL, all 32 gradients of the segments are negative for
each layer group, i.e. the layers thin over time. Figure 4.2 plots the gi values over
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Layer group Mean±Std. Min Max
Retina -0.34 ± 0.06 -0.47 -0.21
RNFL -0.09 ± 0.08 -0.26 0.05
GCL+IPL -0.08 ± 0.03 -0.15 -0.02
INL+OPL -0.03 ± 0.01 -0.05 -0.00
ONL+ELM -0.10 ± 0.02 -0.13 -0.05
IP+OP+RPE -0.03 ± 0.01 -0.05 -0.01

Table 4.1: Descriptive statistics of the line fit gradients gi on scans of healthy subjects
in relation to age, computed in 32 segments along the A-Scans. The values are given
in [µm/year] units. Mean, Std., Min, and Max refer to the values of the 32 segments,
e.g. the Mean column shows the mean gradient value 1

32

∑32
i=1 gi for the respective

layer groups.

the segments i for 3 layer groups as examples. The RPE gradients are very small in
their absolute values, the GCL+IPL gradients have larger absolute values and are all
negative. The RNFL has a different gradient curve along the segments: While in the
temporal, superior and inferior quadrants the RNFL thins over time, the nasal quad-
rant remains constant or grows slightly. This confirms the results of [Bend 10], who
made the same observation on a smaller dataset and with a different segmentation
method. The fine scale distribution of the gradients along the 32 segments does not
match the results from [Bend 10]. This can be explained with different segmentation
methods used, yielding different results especially in BV regions.

A possible age normalization is constructed as follows:

LTage(r) = LTr ·
L̄T i(aref − (as − aref ))

L̄T i(aref )
, for r ∈ Si (4.3)

where LTage(r) is the age-normalized thickness value. A-Scan position r is within
the range of segment Si. The arbitrary reference age aref is set to 50 in this work.
The age of the subject the scan was taken from is as. The normalization scales the
thickness with a scalar factor linearly dependent on the distance from the actual age
as to the reference age aref , e.g. when the gradient gi of L̄T i(a) is negative and the
age as is older than the reference age, the thickness value LT (r) will be enlarged. If
we consider the absolute gradient values of Table 4.1, we expect only a minor altering
of the thickness values. For example the mean gradient of the fit to the RNFL mean
thickness values is −0.09µm per year. Compared to the mean and standard deviation
of the RNFL thickness values of healthy eyes, which is 94.60 ± 9.20µm, this is only
a very small value, i.e. an age difference of over 100 years from the subject age to
the reference age would be necessary to equal the standard deviation in healthy eyes.
The evaluation in Section 4.5.3 will show wheter the age normalization has any effect
on classification results at all.

The thickness normalization and the feature computation described in the next
section take place before the cross-validation experiments are constructed, first of all
to avoid extensive computation times. Features are computed once for each possible
thickness normalization and stored, and not separately in each single cross-validation
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Figure 4.2: Gradients gi of the line fits L̄T i(a) to mean thickness values of healthy
eyes in 32 segments (denoted by i) for 3 example layer groups, the RNFL, GCL+IPL
and IP+OP+RPE.

run. Second, this procedure eases the code structuring and is common practice. But
special care has to be taken. Numbers (e.g. line parameters for the age correction
or features) computed not on single scans but on groups might violate the cross-
validation rule that training and test data are strictly separated. This is the case for
the age normalization. By using all healthy data of the database for computing an
age correction factor, we will violate the strict separation of training and test data in
the cross-validation of the classification experiments. This is valid, as Bendschneider
et al. [Bend 10] found similar results for the RNFL on a much smaller database (170
scans of healthy subjects instead of 453 in this work). Concrete numbers do not
match due to the different databases and segmentation methods used. The mean
thickness and absolute gradient values with respect to age computed in this work are
smaller. However, general observations, i.e. a thinning of the RNFL except in the
nasal quadrant, confirm each other. Therefore, it can be assumed that a reduction of
the samples by 10% in strict cross-validation runs would not alter results significantly.

Focus normalization: As written before, the HE Spectralis scans the circle
around the ONH with a fixed opening angle of the laser beam. Given the radius of
the corneal surface of the eye derived from the focus setting of the Spectralis and
the ametropia measured using special instruments, it computes the assumed ocular
magnification factor with the Garway-Heath formula [Garw 98] and the spacing of A-
Scans in R-direction given this ocular magnification factor. If no radius of the corneal
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surface is set by the operator a default value is assumed. The pixel spacing in the
R-direction ScaleR is stored in the VOL files exported from the system. The mean
and standard deviation of ScaleR are 14.50± 0.56µm among the whole classification
dataset. We normalize the thickness profiles by this eye-specific factor ScaleR:

LTmag(r) = LT (r) · ScaleR; (4.4)

The thickness profile LTmag(r) at A-Scan position r thus represents an area measure.
Both the age normalization and the magnification normalization can be combined to
LTmag,age(r). We compute the magnification normalization first, followed by the age
normalization.

4.3 Feature computation
Out of the 7 layer thickness profiles, i.e. 5 layer groups, the complete retina and
the virtual thickness of the blood vessel indices, the features for the classifier are
generated. The features are standard measures over the complete profile,
means in sections, ratios in sections and PCA features. The features are
defined in the following:

Standard measures over the complete profile: The mean, minimum, maxi-
mum and median values are computed over the whole profile:

fmean =
1

#R

∑
r∈R

LT (r),

fmin = min
r∈R

LT (r),

fmax = max
r∈R

LT (r),

fmed = median
r∈R

LT (r);

(4.5)

For a specific layer group, the layer group name will be denoted as an additional
subindex to the feature f , e.g. fGCL+IPL,mean.

Means in sections: The mean value is not only calculated for the whole thickness
profile, but also in quadrants and the 32 segments already used in Section 4.2 for the
age normalization:

fmean,i =
1

#Si

∑
r∈Si

LT (r) (4.6)

where #Si is the number of A-Scans in segment Si. The means in the segments are
denoted by an additional subindex in the following, e.g. fRNFL,mean,27 for the mean
RNFL thickness in segment 27. The means in the quadrants are denoted with the
quadrant’s first letter, e.g. fRNFL,mean,n for the mean RNFL thickness in the nasal
quadrant.
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Ratios in sections: The mean in segments from a specific layer is combined
with the mean in the same segment from the retina by calculating the proportion the
layer occupies inside the retina:

fratio,i = fmean,i/fRetina,mean,i ; (4.7)

Again, these features are computed for the quadrants and 32 segments. The ratio
features do not make sense in case of the retina, as they always yield 1, and the blood
vessel indices. However, they are taken into the complete feature set for the sake of
structural simplicity.

PCA features: The principal component analysis (PCA) results in a transfor-
mation that converts a set of observations, e.g. vectors of data samples, into a set of
values with linearly uncorrelated variables. The transformation matrix is composed
of the so called PCA eigenvectors (EV). They are ordered by descending variance of
the 1D-projection of the set of observations to them. The PCA EV are the EV of
the covariance matrix of the data set vectors. The principal components build an
uncorrelated orthogonal basis set of the data set space. PCA is a tool that is often
used to reduce the number of data samples to build feature vectors with less entries
than the original data samples, but covering most of the information. We use the
PCA to reduce the dimension of the layer thickness profiles LT (r) from 768, as there
are 768 possible thickness values at the A-Scan positions r, to a lower 10-dimensional
space.

Before computing the PCA, the thickness profiles are downsampled by computing
the mean in 64 segments to reduce small scale variance. The PCA EV and therefore
the transformation matrix is calculated from two datasets: On the complete classi-
fication database and on healthy eyes only. The PCA transformation calculated on
the complete classification database therefore captures most of the variance of both
healthy as well as glaucomatous eyes, while the PCA transformation calculated on
healthy eyes captures only most of the variance of healthy eyes in the first few EV.
The first 10 principal components of both PCA transformations for each thickness
profile are taken as features fPCAall,i and fPCAhealthy,i.

The PCA EV can be plotted to visualize the areas of highest variance. Examples
are given in Figures 4.3 and 4.4. Figure 4.3 a) shows the first 4 EV of the PCA
transformation for the RNFL thickness profile computed on healthy eyes. Most of
the variance of the RNFL thickness on healthy eyes is centered in the middle of the
OCT scan, i.e. the inferior, nasal and temporal quadrants. Compared to the first
4 EV of the PCA transformation computed on the complete classification dataset
plotted in Figure 4.3 b), some observations can be made: The EV change, but the
first 3 EV are similar in shape. The highest variance, as indicated by EV 1 is more
local on healthy data than on all the eyes - most likely due to the RNFL thinning as
a result of the disease. EV 4 is completely different on the PCA transformations of
the two datasets bases. For the EV of the GCL+IPL plotted in Figure 4.4, the first
4 EV have similar shape for both datasets, with the first 2 being near to identical.
This is an indicator that the general shape of the GCL+IPL thickness profile is not
altered to such an extent by glaucoma than the RNFL thickness profile shape.

Computing the PCA EV on all the data or all healthy eye data is a critical vio-
lation of the cross-validation rule of strict separation of training and test data. No
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Figure 4.3: The first 4 PCA eigenvectors of the RNFL thickness profiles. (a) PCA
transformation computed on healthy eyes. (b) PCA transformation computed on
complete classification dataset.
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Figure 4.4: The first 4 PCA eigenvectors of the GC+IPL thickness profiles. (a) PCA
transformation computed on healthy eyes. (b) PCA transformation computed on
complete classification dataset.
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preceding work from literature justifies this and thus it must be further investigated,
as a modification of the data basis for the PCA cannot only alter features slightly, but
may also change the shape of the PCA EV and yield features with a different informa-
tion content. To verify the validity of the computation on the complete datasets, the
PCA is computed on datasets of reduced size. A random selection of 90% of the eye
scans in the original 2 PCA datasets is done. The PCA EV are computed on this re-
duced datasets, which are of the size of a training data set in a 10-fold cross-validation.
As this single random selection is only a single example that does not capture all the
possible effects in the databases, also a random reduction to 50% is performed. The
Euclidean vector distances of the first 10 PCA EV, i.e. the PCA transformation ma-
trix entries that produce the PCA features, computed on the original full dataset to
the PCA EV computed on the randomly reduced datasets are calculated. The mean
and standard deviation of these distances are shown in Table 4.2. The numbers are
generally very small, e.g. the PCA vectors on full and 50% reduced dataset size differ
on average by 0.26 for the RNFL and by 0.42 for the GCL+IPL. However, the pure
number does not allow a conclusion that the general shape of the PCA EV did not
change. Therefore case examples are given in Figure 4.5. The 9th RNFL EV plotted
in Figure 4.5 a) has the largest vector distance of the first 10 RNFL EV from full
dataset size to a database size of 90% of the original data. The vector distance from
full to reduced database size is 0.14 for 90% and 0.35 for 50% of the data. The shape
of even the EV computed on 50% of the data does not differ significantly from the
one computed on the complete data. The 7th GCL+IPL EV plotted in Figure 4.5 b)
has the largest vector distance of the first 10 GCL+IPL EV from full dataset size
to a database size of 90% of the original data and is generally among the EV with
the largest vector distances for all layer groups. The vector distance from the full
to reduced database size is 1.27 for 90% and 0.40 for 50% of the data. The vector
for 50% of the data is more similar to the original one than the one with 90% of
the data, which differs in shape in the inferior quadrant. This can only be explained
with random effects in the database. However, as said, this is an extreme example.
It can therefore be concluded that the computation of the PCA transformation on
the complete classification database or all the healthy eyes do not alter the features
significantly, compared to a strict cross-validation.

In total, 672 features are computed. For each of the 7 layer groups (retina, 5
retina layer groups, and the BV indices), there are 4 standard features, 4 means in
quadrants, 32 means in segments, 4 ratios in quadrants, 32 ratios in segments, 10
PCA features with the PCA being computed on all data of all diagnoses, and 10
PCA features with the PCA being computed on healthy eyes only. 96 features are
thus computed for each layer group. 96 · 7 yields the 672 features.

After the computation of the features, the 672 entries of the feature vector are
separately normalized, i.e. linearly scaled such that each entry has zero mean and
a standard deviation of 1 on the complete data set. Again, this violates the strict
cross-validation. However, this normalization is common practice to avoid numerical
problems in the classifier training. It must be noted that the resulting zero mean
and norm standard deviation hold only for the complete dataset. Data selections as
performed in the cross-validation or by diagnosis groups may not have zero mean and
norm distributed features after this normalization.
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Figure 4.5: Comparison of PCA eigenvectors (EV) computed on datasets with dif-
ferent size. Dataset sizes were reduced by random removal of data. (a) 9th RNFL
EV computed on healthy eyes. The 9th RNFL EV has the largest vector distance of
the first 10 RNFL EV from full dataset size to a database size of 90% of the original
data. The vector distance from full to reduced database size is 0.14 for 90% and 0.35
for 50% of the data. (b) 7th GCL+IPL EV computed on data of all diagnoses. The
7th GCL+IPL EV has the largest vector distance of the first 10 GCL+IPL EV from
full dataset size to a database size of 90% of the original data. The vector distance
from the full to reduced database size is 1.27 for 90% and 0.40 for 50% of the data.
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Boundary 90% All 90% Healthy 50% All 50% Healthy
Retina 0.13 ± 0.07 0.14 ± 0.10 0.20 ± 0.19 0.40 ± 0.23
RNFL 0.07 ± 0.04 0.10 ± 0.06 0.24 ± 0.25 0.31 ± 0.14
GCL+IPL 0.38 ± 0.44 0.17 ± 0.09 0.35 ± 0.19 0.67 ± 0.40
INL+OPL 0.13 ± 0.08 0.19 ± 0.10 0.33 ± 0.14 0.54 ± 0.33
ONL+ILM 0.15 ± 0.10 0.16 ± 0.10 0.74 ± 0.52 0.36 ± 0.20
IP+OP+RPE 0.18 ± 0.18 0.17 ± 0.17 0.79 ± 0.42 0.47 ± 0.39
BV 0.42 ± 0.28 0.41 ± 0.15 0.91 ± 0.34 1.07 ± 0.39

Table 4.2: Mean and standard deviation of the Euclidean vector distance of the first
10 PCA basis vectors obtained from the complete data to the PCA basis vectors
obtained from a random selection of 90% or 50% of the data. The PCA is performed
on all the diagnoses (All) or only thickness profiles from healthy eyes.

4.4 Classification and feature selection

The classification experiments are carried out with a 10-fold cross-validation. The
training and testing of the classifier happens 10 times, each time with a random
selection of 10% of the classification data for testing and the rest for training. The
random selection is done such that after all the cross-validation runs, each data
sample was used once for testing and 9 times for training. If data is obtained from
both eyes of a glaucoma patient, the glaucomatous damage and specifically the RNFL
measurements are correlated between both eyes [Bert 09]. As the classification dataset
contains subjects with both eyes imaged, the selection of data samples for the cross-
validation runs is made in a patient-sensitive manner: In a single cross-validation run,
the eyes of one subject are either in the test or training data, and not split between
both, to avoid the advantage of test data subject knowledge from training.

A classification task is defined by selecting a pair, multiple or a combination of
diagnoses as classes. In general, all the data for these diagnoses are then used to
construct the cross-validation, i.e. no sex or age information is taken into account.
Sex information is not present in the dataset. Performing age matching in each
classification experiment would reduce the dataset size in some classification tasks
significantly. However, it will be of interest whether differing age distribution in
the classes influences the results. Therefore an age matching selection by decades
preceding the cross-validation construction is implemented for 2-class classification
challenges. The datasets are randomly ordered. One data sample is taken from the
first class. If a data sample with the same age decade is found in the second class,
both are taken into the classification experiments. Otherwise the data sample from
the first class is taken out of the experiment. The selection of a data sample from
the first class and searching for a age-matched sample in the second class is repeated
until all data samples in the first class have been looked at once. Classes are roughly
age-matched after the procedure and equal in size. The age matching is used twice
in the results Section 4.5 and specifically noted.

We compare 3 different classifiers: Linear naïve Bayes (Bayes), k-nearest
neighbor (kNN) and linear support vector machines (SVM). This selection is
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not random: The Bayes classifier is common in classification experiments and yields a
baseline result. The kNN classifier is the most widely used representative of parameter
free classifiers. The SVM is still a state-of-the-art classifier that has proven to give
best results for various tasks. Other and mathematically more advanced classifiers,
e.g. neural networks, boosting trees, and random forests might enhance classification
results and have to be taken into account if the goal of a work is to reach best
classification scores at any cost. In this work, the challenge definition, influence
of layer thickness profile normalization and segmentation correction as well as the
feature selection are the centers of research. Linear naïve Bayes, kNN and linear
SVM have all necessary properties that allow for this study and some advances more,
e.g. an easy geometric interpretation of the classification boundary in feature space.
In preliminary tests, naïve Bayes with quadratic decision boundary and SVM with
polynomial and radial basis function (RBF) kernels have been investigated. They did
not improve results compared to the linear classifiers, most likely due to a too small
dataset size for a robust parameter estimation. In the case of the SVM with RBF
kernel, overfitting to the training data was the reason for worse results compared
to the linear SVM. The classifiers will now by explained in a few words. For more
detailed insight in classifiers and data mining see [Fayy 96, Duda 00, Hast 03, Niem03]:

Linear naïve Bayes: The naïve Bayes classifier assumes that the entries of the
feature vector f are independent of each other. The decision rule is the Bayes classifier
decision rule. The class with the maximum a posteriori probability is chosen:

ŷ = argmax
y

p(y|f) = argmax
y

p(y)

#f∏
i=1

p(fi|y) (4.8)

where y is the class number out of k possible classes (y ∈ {1, ..., k}). The entries of
the feature vector f with dimension #f are fi. The class the classifier decided for is ŷ.
The posterior probability that the given feature vector f belongs to class y is p(y|f).
The class prior p(y) is set to be equal for all classes in the classification experiments
of this work and therefore omitted. The posterior p(y|f) can be written as the multi-
plication of the posteriors of the single feature entries p(fi|y) due to the independence
assumption. In addition to the independence of the entries of the feature vector, the
linear naïve Bayes classifier assumes Gaussian distributed class conditionals p(f|y)
that share the same covariance matrix for every class. The posteriors are estimated
by a maximum-likelihood estimation. This breaks down to estimating the mean and
variance of each feature vector entry fi independently, which then can be inserted
into the normal distribution equation to yield the posterior p(fi|y).

k-Nearest neighbor: The kNN classifier is a non parametric classifier. For a
feature vector f from the test data, the k nearest neighbors in feature space fn,1...k
are searched in the training data. “Nearest” means that a norm distance measure
is computed between f and all feature vectors from the training data. Most of the
times the Euclidean distance, i.e. the L2 norm, is utilized. The fn,1...k are the feature
vectors from the training data with smallest distance. A majority vote on the classes
y that are given for fn,1...k determines the assignment of the class ŷ to f .
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Support vector machine: The support vector machine is a classifier for 2-class
problems, but may be extended to multiple classes by various strategies, e.g. mul-
tiple one-class-against-all-other-classes classifiers with majority voting. Two parallel
hyperplanes sharing the same normal vector (e.g. lines in case the feature space
has 2 dimensions) are fitted such through the feature space, that the data samples
belonging to each class are separated by the gap in between the hyperplanes. The
gap is as wide as possible. If the classes are linearly separable, these hyperplanes are
unique. The hyperplanes can be described by the feature vectors that lie nearest to
them and that define the gap in between the hyperplanes. These are called “support
vectors”. The hyperplane halfway trough the gap with the same normal vector as
the gap defining hyperplanes is called the maximum margin hyperplane. The opti-
mization problem of making the gap in between separating hyperplanes as wide as
possible is equivalent to minimizing the norm of the maximum margin hyperplane:

minimize
w,b

‖w‖

subject to yk(w · fk + b) ≥ 1 ∀ 1 ≤ k ≤ #TD;
(4.9)

The maximum margin hyperplane w · x + b = 0 is defined by its normal vector w,
bias b and w · x being the dot product of w and x. The class assignment for a
feature vector fk of the training data with identifier k is yk, which can only take
the values 1 and −1. As mentioned above, the SVM in its base form is suited only
to 2-class problems. The number of feature vectors in the training data is #TD.
The constraints in the equation 4.9 ensure that the maximum margin hyperplane
separates the two classes perfectly.

To classify data that is not linearly separable in feature space, a loss function ξk
is introduced that is 0, if the training feature vector fk is on the side of the maximum
margin hyperplane of the given class, and the Euclidean distance to the maximum
margin hyperplane otherwise. The SVM training problem is now to minimize the loss
function summed over all training data samples, but keeping the gap in between the
separating hyperplanes as wide as possible:

minimize
w,b

1

2
‖w‖+ C

#TD∑
k=1

ξk

subject to yk(w · fk + b) ≥ 1− ξk ∀ 1 ≤ k ≤ #TD;

(4.10)

The tradeoff between those goals is controlled by the SVM regularization parameter C.
Various optimization strategies can be used to solve the problem. The SVM can be
extended to non-linear separating functions by applying a kernel transformation, i.e.
implicitly lifting the feature vectors into a higher dimensional space by generating
new feature vectors that are nonlinear combinations of the entries of the original
ones. This lifting is only implicit as only the dot product of two vectors in the higher
dimensional space must be computed for the minimization problem, the so called
kernel. This kernel replaces the dot product in the original space. As already men-
tioned, we restrict the usage of SVM in this work to linear SVMs and do not apply
kernel transformations.
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GS/Res. y1 y2 y3
y1 n11 n12 n13

y2 n21 n22 n23

y3 n31 n32 n33

(a) Confusion matrix

GS/Res. y1 y2 y3
y1

n11

#y1

n12

#y1

n13

#y1

y2
n21

#y2

n22

#y2

n23

#y2

y3
n31

#y3

n32

#y3

n33

#y3

(b) Confusion matrix (normed)

Table 4.3: Example of a confusion matrix result of a 3 class classification experiment.
yi are the classes, #yi the number of data samples of the respective gold standard
(GS) class in the test data set. nij are the number of data samples with GS class i
assigned to class j by the classifier. The classwise averaged classification rate is given
by 1

3

∑
i=1,2,3

nii

#yi
for 3 classes.

From the possible feature selection methods (see [Guyo 03, Niem03]), e.g. “Se-
lect the best features independent of each other”, “Select the next best feature” and
“Feature elimination”, preliminary tests have shown that one method surpasses the
others on our data. The feature selection is thus performed by “Forward selection and
backward elimination” only. It has to be noted that the linear naïve Bayes classifier
performs slightly better in the experiments when no feature selection is used, i.e. all
672 features are the input to the classifier. The difference between the results are
only minor, and for a general comparability of the results, we decided to use feature
selection in every experiment.

The algorithm “Forward selection and backward elimination” is written in pseudo
code in Figure 4.6. It is described as follows: Classifications are performed by using
the training data of the current cross-validation run for training and testing during
the feature selection process. Starting with an empty feature vector, the feature with
the best classification rate increase with respect to the currently selected features is
added. Then, all selected features are tested to see whether an elimination increases
the classification rate. If so, the feature that contributes the least, i.e. increases the
classification rate most when removed, is eliminated from the feature vector. The
elimination of features is repeated until no feature can be removed without decreas-
ing the classification rate. Then, the algorithm iterates again with the addition of a
feature to the feature vector. This procedure of adding a feature and then testing
if one or more features can be eliminated is repeated until a predefined number of
features is reached or the algorithm converges, e.g. the feature set does not change
from one iteration to the next. The feature selection process is performed for each
cross-validation run separately. The classifier used in the feature selection is the clas-
sifier used for the overall classification experiment. In the experiments, the maximum
number of selected features was set to 30. However, this number was never reached
as the selection process always converged before.

The results of a classification experiment are described with multiple measures.
For all experiments the results are shown in a confusion matrix, i.e. a tabular overview
of the classification results on the test data. The confusion matrix is the sum of the
confusion matrices of the single cross-validation runs. An example confusion matrix
for a 3-class classification experiment is shown in Table 4.3. Classes are denoted by yi.
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fSelected = empty vector;
fSelectedLastIter = undefined;
cRateBest = undefined;
while size(fSelected) < MAXF and fSelected 6= fSelectedLastIter do
fSelectedLastIter = fSelected;
cRate = vector of size #f filled with 0;
for all f do
if f is not in fSelected then
fSelectedTemp = fSelected and f;
cRate[f ] = trainAndTest(fSelectedTemp);

end if
end for
fBestAddition = positionOfMaximum(cRate);
if cRate[fBestAddition] > cRateBest then
fSelected = fSelected and fBestAddition;
cRateBest = cRate[fBestAddition];

end if
removeHappened = true;
while removeHappened do
cRate = vector of size #f filled with 0;
for all f in fSelected do
fSelectedTemp = fSelected without f;
cRate[f ] = trainAndTest(fSelectedTemp);

end for
fBestRemove = positionOfMaximum(cRate);
if cRate[fBestRemove] > cRateBest then
fSelected = fSelected without fBestRemove;
cRateBest = cRate[fBestRemove];

else
removeHappened = false;

end if
end while

end while

Figure 4.6: The feature selection algorithm “Forward selection and backward elimi-
nation” written in pseudo code. Variable and function names are chosen such that
they describe their content or behaviour. MAXF is 30 in this work. The function
trainAndTest trains the selected classifier with the training data and computes the
classwise averaged classification rate on the training data. In the end, the vector
fSelected contains the feature selection.
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The gold standard classes are the rows of the matrix and the classification result the
columns. Each matrix entry nij is the number of data samples with the respective
gold standard class yi assigned to the result class yj. For a better view, beside the
confusion matrix with the results printed in numbers of data samples always a normed
confusion matrix is shown. The rows are divided by the number of data samples in
the respective gold standard class #yi, and the entries therefore show the fraction of
data samples with the respective gold standard class assigned to the result class. A
standard measure that can be computed from the confusion matrix is the accuracy or
overall recognition rate, i.e. the sum of the diagonal of the confusion matrix divided
by the total number of data samples in the experiments. The accuracy is the total
fraction of data samples classified correctly. However, this measure is inadequate in
the present work: We do not know the prior probabilities for the classes. They are
therefore always set equal in the Bayes classification experiments, or given by the data
samples themself in the kNN and SVM experiments. We do not make classes equal
in size, which would be a major reduction in the number of data samples in some
experiments, and could lead to less robust classifier training, especially for the naïve
Bayes and kNN classifier. Therefore the most prominent number used as classification
result is the classwise averaged classification rate, i.e. the mean of the diagonal of
the normed confusion matrix:

CR =
1

#y

∑
i=1,...,#y

nii

#yi
(4.11)

where nii is the number of correctly classified samples of class yi. In the remain-
der of the work, “classification rate” (CR) always refers to the classwise averaged
classification rate, not the overall accuracy.

For 2-class classification experiments additional result measurements are provided:
Sensitivity, specificity and, where appropriate, the receiver-operator curve (ROC).
The sensitivity is the true positive rate, where “positive” means the presence of a
disease. The disease class is always the second class y2 in the confusion table. The
sensitivity (true positive rate) is then:

SENS = n22/#y2; (4.12)

The specificity is the true negative rate:

SPEC = n11/#y1; (4.13)

The ROC curve plots SENS against (1− SPEC) by altering the prior probabilities
of the classes throughout the range from all data samples being classified to the
negative class to all data samples being classified to the positive class. The ROC
curve is easily computed on the results of the linear naïve Bayes classifier. Altering
the prior probabilities of the classes is a translation of the linear decision boundary.
The ROC curve can therefore be calculated by moving a threshold along the posterior
probabilities of the data samples without recomputing the Bayes classifier for specific
priors. The SVM classifier does not take priors into account. However, we can
compute a “virtual” ROC similar to the ROC on Bayes results: The threshold is
moved along the distance to the decision boundary. For the kNN classifier, no ROC
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can be computed. A common measure to quantify a classification result is the area
under the ROC (auROC), which would be 1.0 for an ideal classification result. The
auROC is always given in conjunction with the ROC plot in a figure.

All classification experiments and the feature selection are written in Matlab
(Mathworks, Inc.). The implementation used for the classifiers are the native Matlab
function classify with the option ’diaglinear’ to perform linear naïve Bayes classifi-
cation. The kNN and SVM classifier are taken from the “Statistical Pattern Recog-
nition Toolbox for Matlab” by Michal Schlesinger, Vaclav Hlavac and Vojtech Franc,
downloadable from http://cmp.felk.cvut.cz/cmp/software/stprtool/. Differ-
ent SVM optimizers are available, the one chosen for this work is ’svmlight’ which
performs best on large feature sets. The implementation had to be modified to re-
move endless loop bugs in the SVM optimizer implementation. The parameters of
the classification experiments were always optimized for the best classwise averaged
classification rate. For the SVM, this included a grid search on the C parameter with
grid refinement in each cross-validation run. In the feature selection process, this grid
search leads to unbearable computation times, and therefore the SVM was used with
a fixed C of 1 and less allowed optimization iterations during feature selection. For
the kNN classifier the number k of neighbors was optimized.

A single classification experiment with the features already loaded into the Matlab
workspace, including cross-validation and feature selection takes about 2 minutes for
the linear naïve Bayes classifier, 8 minutes for the kNN classifier and 50 minutes for
the SVM classifier with linear kernel on a MacBook Pro, Intel Core 2 Duo, 2,66 GHz
with 4GB main memory. The SVM optimization and the kNN neighbor search are
performed utilizing compiled Mex-Files for computational efficiency.

http://cmp.felk.cvut.cz/cmp/software/stprtool/
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4.5 Results and discussion
In the following, the classification experiments are presented. First of all, the ap-
proach how to reduce the number of experiments to a feasible count is presented in
Subsection 4.5.1. In Subsections 4.5.2 to 4.5.5, the results are given and discussed.
The confusion matrix is shown for most of the experiments carried out. ROC plots
and the features selected are only shown and discussed if appropriate.

4.5.1 Parameter matrix

The number of differing classification experiments that can be constructed with the
methods given in Sections 4.2 to 4.4 is large:

• There are many ways to formulate classification challenges out of the 4 diagnoses
H, OHT, PPG and PG and their combinations. For example, the diagnoses can
directly be used as classes, which would give one 4-class challenge (H vs. OHT
vs. PPG vs. PG), four 3-class challenges (e.g. H vs. PPG vs. PG) and twelve
2-class challenges (e.g. H vs. PG). The classification challenges are abbreviated
by “first class versus (vs.) second class vs. third class ...”. Out of the possible
combinations of diagnoses two are meaningful: H and OHT are combined to a
“Not glaucoma” class, called Normal (N), and PPG and PG are combined to a
“glaucoma” (G) class. With these two combined classes additional classification
challenges can be formulated (e.g. N vs. G, N vs. PPG vs PG, H vs. G).

• The thickness normalizations yield 4 possible normalization combinations: With-
out normalization, age normalization, magnification normalization, and both
normalizations together.

• 3 classifiers can be tested.

• Taking purely automated or manually corrected segmentation results are 2 pos-
sibilities to run a classification experiment. But training on manually corrected
and testing with automated segmentations and vice versa has also to be con-
sidered, i.e. all 4 combinations of the two segmentation types are of interest.

Thus for each classification challenge 4×3×4 = 48 parameter combinations can be
tested, yielding a number of experiments that have a high overall computation time
and, more importantly: Not all of the experiments provide substantial information
content. Therefore, the experiments have been structured in a meaningful way:

1. First, the classification challenge that is of most interest is searched for in Sub-
section 4.5.2. All further experiments use this classification challenge. The
experiments are based on manually corrected segmentations and no layer thick-
ness normalization is applied. Only the baseline linear naïve Bayes classifier is
used.

2. After the classification challenge is fixed, the influence of the layer thickness
normalizations is investigated in Subsection 4.5.3. We assume that the effects of
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Figure 4.7: Classification evaluation structure. First, the classification challenge of
most interest is searched for. The possibilities to perform a thickness normalization
are looked into afterwards, followed by the comparison of the 3 classifiers. Finally,
the influence of the manual correction of the segmentations is investigated. Below
the step boxes, the parameters fixed by intention in the respective experiments are
noted.

the normalizations, if there are any, show with manually corrected segmentation
data and the Bayes classifier. The best normalization method is applied in all
the remaining experiments.

3. The 3 classifiers are compared in Subsection 4.5.4 with manually corrected
segmentation data.

4. Finally, the selected classifier on manually corrected segmentation data is used
to study the influence of the manual corrections in Subsection 4.5.5.

The structure of the classification evaluation is shown schematically in Figure 4.7.

4.5.2 Challenge definition

Only manually corrected segmentation data and the linear naïve Bayes classifier are
used to find the most interesting classification challenge. No thickness normalization
is applied. The obvious classification challenge we will have to look at first is the
4-class problem H vs. OHT vs. PPG vs. PG. Each diagnosis is directly taken as a
class. Results are given in Table 4.4:

GS/Res. H OHT PPG PG
H 256 122 71 1
OHT 75 48 47 7
PPG 25 28 88 27
PG 3 4 41 174

(a) Confusion matrix

GS/Res. H OHT PPG PG
H 0.57 0.27 0.16 0.00
OHT 0.42 0.27 0.27 0.04
PPG 0.15 0.17 0.52 0.16
PG 0.01 0.02 0.18 0.78

(b) Confusion matrix (normed)

Table 4.4: Classification result for the 4-class challenge H vs. OHT vs. PPG vs. PG.
No layer thickness normalization applied. Linear naïve Bayes classifier. Manually
corrected segmentation data. Classwise averaged classification rate: 0.537.
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The CR is 0.537. While the PG class has been detected with a classification rate
of 0.78, the other classes and especially the OHT class, with a classification rate
of only 0.27, fall behind. The confusion is distributed around the diagonal of the
confusion matrix: There is almost no H eye classified as PG and vise versa. H eyes
may be classified as OHT and PPG. OHT are most of the times classified as H, and
as OHT and PPG with the same rate. The wrongly classified PPG eyes are almost
evenly distributed over the other classes. PG eyes are sometimes classified as PPG,
but most of the times correct. This structure of the confusion matrix resembles the
fact that the classes are ordered with increasing severity of the diagnosis. As the
overall CR is very low, other classification challenges are formulated.

GS/Res. H OHT
H 245 210
OHT 91 88

(a) Confusion matrix

GS/Res. H OHT
H 0.54 0.46
OHT 0.51 0.49

(b) Confusion matrix (normed)

Table 4.5: Classification result for H vs. OHT. No layer thickness normalization
applied. Linear naïve classifier. Manually corrected segmentation data. Classwise
averaged classification rate: 0.515. Sensitivity: 0.492. Specificity: 0.538.

The classes with the highest confusion in the 4-class problem, H and OHT, built
the next classification challenge H vs. OHT. It is tested whether they are separable at
all. The classification result in Table 4.5 nearly resembles a random choice, which is
reasonable given the diagnosis definitions. The OHT eyes do not, except the elevated
eye pressure, show signs of structural or functional damage. To enlarge class sizes, a
combination of the two diagnoses into one “normal” class (N) suggests itself.

Before investigating the N class, another two challenges with the original diagnoses
are looked at. The two extremes of the diagnoses are tested against each other, i.e. H
vs. PG. Results are given in Table 4.6. The classifier separates the two classes with

GS/Res. H PG
H 443 4
PG 19 204

(a) Confusion matrix

GS/Res. H PG
H 0.99 0.01
PG 0.09 0.91

(b) Confusion matrix (normed)

Table 4.6: Classification result for H vs. PG. No layer thickness normalization ap-
plied. Linear naïve Bayes classifier. Manually corrected segmentation data. Classwise
averaged classification rate: 0.953. Sensitivity: 0.915. Specificity: 0.991.

a CR of 0.953. The auROC is 0.985 (ROC plot not shown). The CR and auROC
numbers are in the same range as in other publications that investigated this problem
[Burg 05, Huan 05, Bask 12] and as in the preceding work by the author [Maye 09].
All these publications only included glaucoma patients with visual field defects in
their database. Advanced glaucoma cases can thus be easily separated from healthy
eyes in an automated process. Even the simple linear naïve Bayes classifier is able to
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reach a high differentiation. However, more interesting from a clinical point of view
is the detection of PPG cases. As these eyes do not show visual field defects, it is
more likely that the disease has been unnoticed by the subject. Dedicated screening
centers that keep examination times low for both the subject and the examiner by
using automated scores may help to detect the disease early. Shorter examination
times may improve the chance that a subject decides to have his or her eyes checked
on a regular basis. Table 4.7 shows the results for the H vs. PGG challenge. The CR
drops compared to the H vs. PG challenge and is 0.73. The task of differentiating
PPG eyes from healthy ones is not as simple as in the advanced PG cases. The
confusion with the respective other class is roughly similar for both classes, H and
PPG.

GS/Res. H PPG
H 338 104
PPG 50 118

(a) Confusion matrix

GS/Res. H PPG
H 0.76 0.24
PPG 0.30 0.70

(b) Confusion matrix (normed)

Table 4.7: Classification result for H vs. PPG. No layer thickness normalization ap-
plied. Linear naïve Bayes classifier. Manually corrected segmentation data. Classwise
averaged classification rate: 0.734. Sensitivity: 0.702. Specificity: 0.765.

GS/Res. N PG
N 617 18
PG 22 202

(a) Confusion matrix

GS/Res. N PG
N 0.97 0.03
PG 0.10 0.90

(b) Confusion matrix (normed)

Table 4.8: Classification result for N vs. PG. No layer thickness normalization ap-
plied. Linear naïve Bayes classifier. Manually corrected segmentation data. Classwise
averaged classification rate: 0.937. Sensitivity: 0.902. Specificity: 0.972.

GS/Res. N PPG
N 457 178
PPG 51 117

(a) Confusion matrix

GS/Res. N PPG
N 0.72 0.28
PPG 0.30 0.70

(b) Confusion matrix (normed)

Table 4.9: Classification result for N vs. PPG. No layer thickness normalization ap-
plied. Linear naïve Bayes classifier. Manually corrected segmentation data. Classwise
averaged classification rate: 0.708. Sensitivity: 0.696. Specificity: 0.720.

Finally, we investigate the combined N class. Therefore three classification chal-
lenges are defined: N vs. PG, N vs. PPG, and N vs. the combination of PPG and
PG, i.e. all glaucomatous eyes G. The results are given in Tables 4.8, 4.9 and 4.10.
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GS/Res. N G
N 578 49
G 95 295

(a) Confusion matrix

GS/Res. N G
N 0.92 0.08
G 0.24 0.76

(b) Confusion matrix (normed)

Table 4.10: Classification result for N vs. G. No layer thickness normalization ap-
plied. Linear naïve Bayes classifier. Manually corrected segmentation data. Classwise
averaged classification rate: 0.839. Sensitivity: 0.756. Specificity: 0.922.

The results of the N vs. PG and N vs. PPG challenges are, while slightly worse,
very similar to the H vs. PG and H vs. PPG results. This is another indicator that
the combination of H and OHT to N is valid. The N vs. G result (CR = 0.839) is
in the middle between N vs. PPG and N vs. PG. It is better than the average of
these two results, which might be due to the enlarged training data. For N vs. G,
less N eyes are wrongly assigned than for N vs. PPG. Figure 4.8 shows the ROC
plots of the 3 challenges with the N class. The auROC for the N vs. PG challenge is
0.975, the auROC for the N vs. PPG challenge 0.775, and the auROC for the N vs.
G challenge 0.903. The N vs. G challenge is selected to be the most interesting one
for two reasons. First, it can be medically reasoned: The aim is to differentiate eyes
without glaucoma from eyes with glaucoma, leaving out the other factors, namely
elevated eye pressure or the severity of the disease. Second, the combination of the
diagnoses enlarges the data samples available for training and testing and yields more
resilient results.

Before investigating the effects of the thickness normalizations, we have a closer
look on which features are chosen in the N vs.G classification experiment. There were
35 different features chosen during the cross-validation runs. On average, the feature
selection in each cross-validation run picked 5.10 features. Table 4.11 a) shows the
features selected most often, i.e. more than once. Only the mean RNFL thickness in
the inferior quadrant was used in every single cross-validation run. It was expected
that RNFL features lead the feature ranking as this is the layer with highest diagnostic
relevance for glaucoma, proven by all publications on glaucoma diagnosis from OCT.
The other most selected features are mean values of the INL+OPL in two segments
and, interestingly, blood vessel indices ratio and PCA features. The blood vessel
indices ratio and PCA features have no straightforward relation to a distance or area
measure on the OCT image. However, they seem to add to the discriminative value
of the RNFL measure in case of the linear naïve Bayes classifier. Also the INL+OPL
layer is not a common glaucoma indicator. Summing up the times a feature was used
from a specific layer group yields Table 4.11 b). The table does reflect the feature
ranking, with RNFL, BV and INL+OPL features chosen most often. The overall
retina features do not seem to contribute much to a glaucoma discrimination when
features of single layer groups are available. Table 4.11 c) sums up the times a feature
with a specific type was used. The means in segments are the most relevant features.
We will again have a look at the features in Section 4.5.5 in the final classification
experiments. Up to now, the presence of the INL+OPL and BV features in the
feature vectors for classification are a surprise.
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Figure 4.8: ROC plots of the classification challenges including the “normal” (N) class,
i.e. the combination of H and OHT. No thickness normalization applied. Linear naïve
Bayes classifier. Manually corrected segmentation data.

4.5.3 Influence of thickness normalization

In Section 4.2, the method for an age normalization of the thickness profiles was
presented. However, it was already shown that the effects of the normalization are
small compared to the normal thickness distribution of the layer groups. And indeed,
as Table 4.12 shows, we were not able to obtain better results. The CR decreases
to 0.826. Performing the N vs. G experiments on decade age-matched data gives a
similar result. Without thickness normalization, the CR is 0.822, and with age nor-
malization 0.821, i.e. the CR stays almost the same on age-matched data (confusion
matrices are not shown for the age-matched data experiments). A proper test on
the effect of the age normalization would be not only using age-matched data, but
data that is evenly distributed among an age range in both classes. However, this is
not possible with the database of this work as the resulting data sample reduction
would prevent robust classifier training. The CR results together with the analysis
of the method in Section 4.2 lead to the conclusion that the age normalization has
no pronounced effect on classification results, especially no positive effect.

The same is true for the magnification normalization, as can been seem from Ta-
ble 4.13. The CR is 0.826, i.e. also lower than without normalization (CR = 0.839).
If both normalization methods are combined, the CR is 0.830 (confusion matrix not
shown) and does again not surpass the result without normalization. The conclu-
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Feature #Incl.
fRNFL,mean,i 10
fBV,ratio,5 3
fINL+OPL,mean,10 2
fINL+OPL,mean,30 2
fBV,ratio,1 2
fBV,ratio,29 2
fBV,PCAhealthy,2 2

(a) Feature ranking

Layer #Feat.
Retina 2
RNFL 13
GCL+IPL 5
INL+OPL 8
ONL+ELM 7
RPE grp. 4
BV 12

(b) Layer groups

Type #Feat.
Std. 2
4 Quad. 11
32 Seg. 17
4 Ratios 1
32 Ratios 10
PCA All 3
PCA H. 7

(c) Feature types

Table 4.11: Selected features for N vs. G. No layer thickness normalization applied.
Linear naïve Bayes classifier. Manually corrected segmentation data. Total number
of different features chosen during cross validation: 35. Average number of features
chosen during cross validation runs: 5.10. a) Features that were chosen more than
once. #Incl.: Number of cross validation runs this feature was included. b) Summa-
rized feature inclusions from a specific layer group during the cross validation. RPE
grp.: IP+OP+RPE. #Feat.: summarized #Incl. of features from this layer group
during the cross validation. c) Summarized feature inclusions from a specific feature
type during the cross validation. #Feat.: summarized #Incl. of features from this
feature type during the cross validation.

GS/Res. N G
N 568 59
G 100 290

(a) Confusion matrix

GS/Res. N G
N 0.91 0.09
G 0.26 0.74

(b) Confusion matrix (normed)

Table 4.12: Classification result for N vs. G. Age layer thickness normalization ap-
plied. Linear naïve Bayes classifier. Manually corrected segmentation data. Classwise
averaged classification rate: 0.825. Sensitivity: 0.744. Specificity: 0.906.

sion is that, while the layer thickness normalization methods seem reasonable from
a theoretical point of view, they do not improve results in real classification exper-
iments. Therefore, the upcoming experiments are performed without any thickness
normalization.

GS/Res. N G
N 573 54
G 102 288

(a) Confusion matrix

GS/Res. N G
N 0.91 0.09
G 0.26 0.74

(b) Confusion matrix (normed)

Table 4.13: Classification result for N vs. G. Magnification layer thickness normal-
ization applied. Linear naïve Bayes classifier. Manually corrected segmentation data.
Classwise averaged classification rate: 0.826. Sensitivity: 0.738. Specificity: 0.914.
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4.5.4 Classifier selection

In the previous results sections the N vs. G classification challenge was decided to
be the most interesting, and it turned out that layer thickness normalization has no
positive effect. We will now compare the 3 classifiers linear naïve Bayes, kNN and
linear SVM. Still manually corrected segmentation data is utilized. The classification
result of the linear naïve Bayes was already shown in Table 4.10. A CR of 0.839 is
achieved. The kNN results are given in Table 4.14. Using k = 7 neighbors yielded the
best CR of 0.823, worse than the linear naïve Bayes classifier. As the kNN classifier
is sensitive to an uneven class distribution in the training data, the experiment has
also been carried out on age-matched data with even class sizes, yielding a even lower
CR of 0.810 (confusion matrix not shown).

GS/Res. N G
N 580 47
G 109 281

(a) Confusion matrix

GS/Res. N G
N 0.93 0.07
G 0.28 0.72

(b) Confusion matrix (normed)

Table 4.14: Classification result for N vs. G. No thickness normalization applied.
kNN classifier with k = 7. Manually corrected segmentation data. Classwise averaged
classification rate: 0.823. Sensitivity: 0.721. Specificity: 0.925.

The results of the linear SVM surpass the linear naïve Bayes classifier and kNN
results, as can be seen from Table 4.15. A CR of 0.859 is achieved. The number of
wrongly assigned samples from both the N and G class are lower than for the linear
naïve Bayes classifier. Therefore the SVM is chosen as the classifier for the final
experiments in the next section. The features chosen are also discussed there.

GS/Res. N G
N 587 40
G 85 305

(a) Confusion matrix

GS/Res. N G
N 0.94 0.06
G 0.22 0.78

(b) Confusion matrix (normed)

Table 4.15: Classification result for N vs. G. No thickness normalization applied.
Linear SVM classifier. Manually corrected segmentation data. Classwise averaged
classification rate: 0.859. Sensitivity: 0.782. Specificity: 0.936.
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4.5.5 Manually corrected and automated results

Up to now, we only used segmentation data that was manually corrected. However,
as stated before, this is not common practice. Most publications use the built-in
segmentation methods from the OCT manufacturer without correcting the results.
Excluding scans of low quality should guarantee the quality of the segmentations. But
it cannot be denied that each segmentation method fails sometimes, especially if the
image content does not match the assumptions the segmentation algorithm developer
made. In the extensive evaluation of the segmentation algorithm presented in this
work in Chapter 3 it was shown that, in general, good segmentation results can be
expected, with minor errors on the ONFL and IPL/INL boundary. But there were
also major failures, with 2 scans standing out prominently from the segmentation
evaluation dataset. The segmentation failure on these two scans could be explained
by wrong retina positioning and the possibility of the presence of another disease
besides glaucoma. The explanation of the failures does not alter the fact that in
daily clinical practice such scans will be recorded and sometimes must be used, in case
the patient’s condition does not allow for a better scan. It will now be investigated
whether the correction of all the minor and major segmentation errors influences the
glaucoma classification. The automatically generated segmentations of the complete
classification dataset were corrected for segmentation errors by the author. The
manual corrections are a valid representation of the corrections by a single observer,
as we have shown in the observer evaluation in Section 3.4. If we do not classify on
this manually corrected data but on the purely automated segmentation results, the
classification rate gets worse, as Table 4.16 shows. On manually corrected data, a
CR of 0.859 is achieved and on the purely automated data 0.842.

GS/Res. N G
N 591 36
G 101 289

(a) Confusion matrix

GS/Res. N G
N 0.94 0.06
G 0.26 0.74

(b) Confusion matrix (normed)

Table 4.16: Classification result for N vs. G. No layer thickness normalization ap-
plied. Linear SVM classifier. Automated segmentation data. Classwise averaged
classification rate: 0.842. Sensitivity: 0.741. Specificity: 0.943.

But looking only at confusion matrices and classification rates tells only part of
the story. Depending on the data used, different features are selected during the
training process, as Tables 4.17 and 4.18 show. The features selected when using
manually corrected segmentation data are summarized in Table 4.17. Compared to
the selection with the linear naïve Bayes classifier, we see the similarity that again
the mean RNFL thickness in the inferior quadrant is the most often used feature.
However, the BV features, the presence of which cannot be fully explained in the
selected features by the Bayes classifier, have vanished. The features used most
often by the linear SVM are dominated by RNFL features. Also the features of the
complete retina are selected often - again, contrary to the selection of the linear naïve
Bayes classifier. Features from the other layers play only a minor role, but they are
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Feature #Incl.
fRNFL,mean,i 9
fRNFL,mean,s 4
fRNFL,PCAhealthy,9 2
fRetina,PCAhealthy,4 2
fINL+OPL,ratio,6 2

(a) Feature ranking

Layer #Feat.
Retina 10
RNFL 25
GCL+IPL 5
INL+OPL 6
ONL+ELM 5
RPE grp. 4
BV 0

(b) Layer groups

Type #Feat.
Std. 2
4 Quad. 16
32 Seg. 12
4 Ratios 1
32 Ratios 19
PCA All 0
PCA H. 5

(c) Feature types

Table 4.17: Selected features for N vs. G. No layer thickness normalization applied.
Linear SVM classifier. Manually corrected segmentation data. Total number of dif-
ferent features chosen during cross validation: 41. Average number of features chosen
during cross validation runs: 5.50. For a description of the tables and abbreviations
see 4.11.

also selected. However, there is no layer group standing out beside the RNFL. As
the GCL+ICL is now also in the focus of glaucoma research, one could expect more
features selected from this layer, but this is not the case. Perhaps the scan pattern
is the reason: GCL+ICL measures are usually taken from the macula region, not
on the circular scan pattern around the ONH. Regarding the feature types selected
most often, means or ratios in segments are prominent, sometimes the PCA features
with the PCA transformation computed on healthy data. Standard measures from
the complete layer thickness profiles are only selected twice in a cross-validation run.

Switching from manually corrected segmentation data to purely automated seg-
mentations results in the feature selection summarized in Table 4.18. The classifier
seems to adapt to the data that is less reliable. Still, the RNFL is the layer most
features used originate from, and the distribution of features from the different layers
in Table 4.18 b) is very similar to the one from 4.17 b). But the top-ranking fea-
ture is now the overall mean RNFL thickness - a feature that was only selected once
when using manually corrected data. The feature type ranking of automated data
in Table 4.18 c) compared to the feature type ranking on manually corrected data in
Table 4.17 c) adds to the image: Overall measures, i.e. standard measures and PCA
features) are selected more often when automated data containing segmentation er-
rors is used, local measures, i.e. means and ratios in sections, less often. The feature
selection adapts to less reliable data by choosing measures of more global scale.

What happens when the training of the classifier is made on one data type (purely
automated segmentations or manually corrected ones), but the testing is made on the
other? One could imagine the scenario that extensive care is taken when building a
classification system, and all errors are removed from the segmentations the system is
trained with. But in daily clinical practice, with tight time schedules, the correction of
the segmentation results is omitted. Results for this scenario are given in Table 4.19.
The classification system after feature selection and training is the same as for the
results in Table 4.15, with the feature selection summarized in Table 4.17, i.e. the
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Feature #Incl.
fRNFL,mean 6
fRNFL,mean,i 3
fRNFL,ratio,i 2
fRetina,mean,25 2
fRNFL,PCAall,1 2
fRNFL,ratio,s 2
fRNFL,mean,16 2

(a) Feature ranking

Layer #Feat.
Retina 7
RNFL 27
GCL+IPL 3
INL+OPL 5
ONL+ELM 6
RPE grp. 2
BV 0

(b) Layer groups

Type #Feat.
Std. 9
4 Quad. 3
32 Seg. 14
4 Ratios 6
32 Ratios 9
PCA All 6
PCA H. 3

(c) Feature types

Table 4.18: Selected features for N vs. G. No layer thickness normalization applied.
Linear SVM classifier. Automated segmentation data. Total number of different
features chosen during cross validation: 38. Average number of features chosen during
cross validation runs: 5.00. For a description of the tables and abbreviations see 4.11.

more local features. But in the cross-validation runs, the features generated from the
automated segmentations have been used for the test data samples. Interestingly, the
CR does barely change and is 0.861. It does not get worse. It seems that although
the segmentation errors influence the feature selection and training of the classifier,
they are not critical for the single classification results.

GS/Res. N G
N 581 46
G 80 310

(a) Confusion matrix

GS/Res. N G
N 0.93 0.07
G 0.21 0.79

(b) Confusion matrix (normed)

Table 4.19: Classification result for N vs. G. No thickness normalization applied.
Linear SVM classifier. Classifier training with manually corrected segmentation data
and testing on automated data. Classwise averaged classification rate: 0.861. Sensi-
tivity: 0.795. Specificity: 0.927.

When performing this experiment the other way round, i.e. using the classifi-
cation system trained on purely automated data that selected more global features
summarized in Table 4.18, and testing with the manually corrected data, there is a
change in the results (shown in Table 4.20): The CR drops to 0.824. To have a closer
look, the ROCs of the 4 relevant classification experiments of this section are plot-
ted in Figure 4.9. The classification systems trained with manually corrected data
perform best with auROC values of of 0.910 and 0.915. Training on automated data
yields auROC values of 0.898 and 0.884.

While every segmentation method will most likely give slightly different results
and other segmentation errors, depending on the assumptions made, it is most likely
that the following statement holds in general: When training a glaucoma classification
system on OCT data, manually corrected data should be used, no matter if the
classification system is later used with manually corrected or purely automated data.
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Figure 4.9: ROC plots of classification experiments on automated and manually cor-
rected segmentation data. No thickness normalization applied. Linear SVN classifier.

GS/Res. N G
N 559 68
G 95 295

(a) Confusion matrix

GS/Res. N G
N 0.89 0.11
G 0.24 0.76

(b) Confusion matrix (normed)

Table 4.20: Classification result for N vs. G. No thickness normalization applied.
Linear SVM classifier. Classifier training with automated segmentation data and
testing on manually corrected data. Classwise averaged classification rate: 0.824.
Sensitivity: 0.756. Specificity: 0.892.

4.6 Proposal of an OCT glaucoma probability score

The linear SVM classifier has a property we can utilize to construct a glaucoma
probability score for OCT (OCT-GPS). Its decision boundary can be geometrically
interpreted. It is a hyperplane through the feature space. While this hyperplane
leads to binary decisions in the classifier, i.e. the feature vector is assigned to the
class of the side of the hyperplane it lays, we can also derive a continuous measure:
The distance of the feature vector from the decision boundary. This distance is the
base for the proposed OCT-GPS.
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A remark has to be made on the decision boundary and the class distribution of
samples in the data set. Standard SVMs train best when the data is balanced, as the
cost of misclassification in both classes is the same, no matter what the priors of the
classes are. In [Fran 11] two common heuristic methods for dealing with unbalanced
classes are mentioned: First, the introduction of an additional cost factor during
training. Second, the tuning of the bias after an unaltered training to achieve better
error rates. In this work, the training process and the data distribution are also
taken as they are and no weighting is introduced due to the uneven class sizes. Using
the distance to the decision boundary as a continuous measure is exactly the same
heuristic as tuning the bias for differing priors.

All the classification experiments performed in Section 4.5 performed the feature
selection inside the single cross-validation runs, i.e. the number of features chosen
might differ from one run to the next. To make the distance to the decision boundary
comparable between cross-validation runs, again a classification experiment is per-
formed. This time a fixed feature set is used. All 41 features that were chosen at
least once when using a linear SVM classifier and manually corrected segmentation
data built this feature set. The result is given in Table 4.21. With the fixed feature
set, the CR improved compared to the forward selection and backward elimination
feature selection to 0.882.

GS/Res. N G
N 590 37
G 69 321

(a) Confusion matrix

GS/Res. N G
N 0.94 0.06
G 0.18 0.82

(b) Confusion matrix (normed)

Table 4.21: Classification result for N vs. G. No thickness normalization applied.
Linear SVM classifier. Manually corrected segmentation data. No automated feature
selection, but fixed feature set used. Classwise averaged classification rate: 0.882.
Sensitivity: 0.823. Specificity: 0.941.

The OCT-GPS is defined by:

OCT −GPS(d) =


0%, d ≤ Dmin

100%, d ≥ Dmax

d−Dmin

Dmax−Dmin
· 100%, otherwise

(4.14)

where d is the distance of a feature vector to the SVM decision boundary. Dmin is the
left and Dmax the right boundary of the distance range that yield OCT-GPS number
between 0% and 100%. The distances to the decision boundary on the classifica-
tion evaluation dataset range in [−7.51; 5.31]. Dmin and Dmax are set to −3 and 3,
respectively. These numbers were chosen such that the resulting histogram distribu-
tion of the OCT-GPS on the classification evaluation dataset is as even as possible.
The classification result can also be directly derived from the OCT-GPS. Below 50%,
the data sample is assigned to the N class, above to the G class. The correlation of
the OCT-GPS to the glaucoma diagnosis G on the classification evaluation dataset
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Figure 4.10: OCT-GPS distribution histogram on the classification evaluation
dataset. The gold standard (GS) diagnoses falling into a OCT-GPS tenth are counted.

is 0.747, which is much higher than the best correlation a single feature yields (0.698
for FRNFL,mean,i).

The histogram distribution is shown Figure 4.10. Besides the general distribution
of the OCT-GPS, the distribution of the original GS diagnoses along the OCT-GPS
can be read from the figure. The histogram bins count the GS diagnoses. The
properties of this GS distribution support the idea of the OCT-GPS. Below 30%
OCT-GPS in the histogram, no PG eye can be found. In general, there are only very
few PG datasets misclassified and therefore below 50% OCT-GPS. Above 80% OCT-
GPS, there is no healthy eye. OHT eyes are clearly positioned to the lower side of
the OCT-GPS, which again validates the combination of them with H eyes to the N
class. The PPG eyes are the most difficult diagnosis to detect automatically by OCT.
They are the ones that are assigned to the wrong class most often, but still a majority
(60.7%) is above 50% OCT-GPS. The reasonable GS diagnosis distribution among the
OCT-GPS together with its straightforward and easy-to-explain construction suggest
its use as a glaucoma diagnosis parameter.
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4.7 Outlook
In nearly every step of the pattern recognition pipeline, there are possibilities to
further enhance the glaucoma classification system presented in the future. First of
all, while the database size of the classification evaluation dataset is huge compared
to even recent works [Garc 12, Mwan 13, Yiu 14], the number of samples still only
allows for a robust estimation of linear decision boundaries, as preliminary tests have
shown. As database sizes in the clinics increase, the presented experiments should be
repeated, also using more advanced classifiers.

There are already numerous publications on segmentation methods for OCT vol-
ume data (see Section 3.1 and Tables B.1 and following) that sometimes segment
up to 10 layers. Parameters derived from volume segmentations may surpass the
ones from circular scans around the ONH in their diagnostic capability for glaucoma
[Leun 10b, Hwan 12, Seo 12]. But there is a tradeoff: For a proper data mining and for
automated feature selection methods as presented in this work, database sizes must
be as large as possible, as mentioned in the previous paragraph. As volume scans
were only recently introduced to daily clinical practice, it will take years to build up
proper data bases. Publications with automated classification systems using OCT
volume data underline this: Zhang et al. [Zhan 13] used a database of 232 volume
scans. Srinivasan et al. [Srin 14b] used 45 volume scans. No publication with OCT
volume scans had database of around a thousand data samples available as in this
work, with the exception of [Bask 12] with 794 low resolution cube scans from the
Zeiss Cirrus OCT.

Using only circular scans may also be a benefit: Simple and cheap OCT systems
built with off-the-shelf components can be set up in eye disease mass screening centers.
The speed of cheap systems may not be on par with high-end or research OCT
systems, but enough for a high quality circular scan that is sufficient to automatically
detect glaucoma suspects, e.g. with the OCT-GPS score presented in this work.

Finally, the features in this work were restricted to features derived from retinal
layer segmentations. Features taken directly from image data could also be tested for
their capability to detect glaucoma. Especially concepts like the flat space introduced
by Carass et al. [Cara 14] may yield features that do not rely on a segmentation
algorithm.

To conclude this chapter, the results can be briefly summarized as follows: Among
the possible classification challenges for the diagnoses in the database, trying to sep-
arate non-glaucomatous (healthy and ocular hypertension) from glaucomatous eyes
was of most interest. Normalizations of the layer thickness profiles did not have a
positive effect on the classification results. The linear SVM classifier was the classifier
with the best results. When using purely automated segmentation data, the feature
selection process tends to choose features of more global scale compared scenarios
where manually corrected data is used. Performing the feature selection and classi-
fier training on manually corrected data gives better classification rates, also in the
case that it is tested on purely automated segmentation results without corrections.
A glaucoma probability score derived from the distance of the feature vector to the
SVM decision boundary was proposed. This score exhibits a favorable distribution
of the gold standard diagnoses and may thus be used as a glaucoma parameter.
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Summary

Glaucoma is a chronic disease which may cause blindness. The structural damage
done by glaucoma is irreversible. It is only possible to slow down its progression.
Therefore the early detection of the disease is of significant importance for the pa-
tient. There exists no single measurement on which the diagnosis can be based on.
Instead, the ophthalmologist relies on multiple modalities, for example visual field
tests, fundus photography, the Heidelberg retina tomograph (HRT) and optical co-
herence tomography (OCT).

OCT is a modality that utilizes the properties of short coherent light to generate
depth profiles of tissue. Since its invention [Huan 91], its main application was oph-
thalmology, as OCT allows to visualize the retinal structure in vivo [Ferc 93]. Modern
systems can acquire 2D scans consisting of multiple depth profiles in a fraction of a
second, making eye motion artifacts negligible. While 3D imaging has been intro-
duced into clinical practice in recent years, the most common scan pattern is still a
circular scan around the optic nerve head (ONH) with a standardized diameter of
3.46mm. The retinal nerve fiber layer (RNFL) thickness measured on this circular
scan is an important glaucoma indicator [Gued 03].

As the number of glaucoma patients is expected to increase in the future [Quig 06],
supporting the diagnosis by automizing parts of the routine is necessary to keep
examination times low. For example, the HRT has a built-in glaucoma probability
score (GPS) [Swin 00] that is calculated by machine learning methods and breaks the
imaged topography of the retina down to a single number. In this work, a GPS for
OCT (OCT-GPS) is proposed. It is based on the development, implementation, and
evaluation of a complete pattern recognition pipeline, which for the first time allowed
to break a restriction of the built-in methods from OCT manufacturers, i.e. to use
complete layer segmentation results and not only summarized parameters. First, the
retinal layers are segmented on a circular OCT scan around the ONH to generate
thickness profiles of 6 retinal layer groups and to find the blood vessel positions. The
thickness profiles are optionally normalized and then multiple features are generated
from them, among others novel principal component analysis features. A feature
selection process, i.e. a data mining method, chooses relevant features. These are
assigned to a diagnosis class by a classifier. In the following, the properties of the
data collection this work is based on, the methods and evaluation results for the
segmentation algorithm, and the classification system are summarized.

97
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Circular scans around the ONH were acquired with a Spectralis HRA+OCT (Hei-
delberg Engineering, Heidelberg, Germany) from subjects included in the “Erlangen
Glaucoma Registry” (www.clinicaltrials.gov, NCT00494923). They reflect data from
daily clinical practice. Scans were only excluded when a human observer is not able
to differentiate retinal layers on the scan, i.e. if the retina is not completely in the
scan area or severe averaging artifacts are present. Contrary to other publications
in the field [Bask 12, Garc 12] scans were explicitly not excluded when they had low
image quality or when other diseases beside glaucoma are present. For 1024 scans age
information and a diagnosis were available. These form the classification data set.
The diagnosis was carried out by medical experts based on an extensive ophthalmic
examination. There are 453 healthy (H) eyes, 179 eyes with ocular hypertension
(OHT), 168 preperimetric glaucoma (PPG) eyes, and 224 perimetric glaucoma (PG)
eyes from 575 subjects in total. From this classification dataset a segmentation evalu-
ation dataset was created by random selection that fulfilled these properties: 30 scans
from each diagnosis group, half of them from a left and half from a right eye. Only
one eye from a subject. The built-in quality index from the Spectralis (HE quality) is
available. With the quality index, the scans from the segmentation evaluation dataset
can be separated into 60 scans of low and 60 scans of high quality. The separation
into low and high HE quality correlates with the glaucoma (PPG and PG) diagnosis
with a correlation coefficient of −0.03 and is therefore nearly independent of the di-
agnosis. The segmentation evaluation dataset is comparable in size to datasets used
in other publications on retinal layer segmentation. The full classification dataset is
the largest dataset used up to now for a classification task on OCT data.

The presented segmentation algorithm is an extension of [Maye 10]. The goal of
the algorithm development was that it is applicable on healthy and glaucomatous
eyes without a parameter change, even in the presence of a RNFL hole. Bad quality
of the scan should not influence the segmentation results. The algorithm is built
around a few general assumptions, e.g. the most reflecting layers are the RNFL and
retinal pigment epithelium (RPE), the shape of the RPE is not disrupted and the
inner layer boundaries of the retina are to a large extent parallel to the RPE bound-
ary. 6 layer boundaries are segmented and the blood vessel positions are found. The
layer boundaries are segmented step-by-step. Each processing step contains a proper
pre-processing, i.e. denoising, and post-processing, i.e. smoothing of the segmented
layer boundary. The inner limiting membrane (ILM), the topmost layer boundary on
an OCT scan of the retina and the RPE are easily found: First, the image is heavily
blurred. The minimum inside two maximum peaks in each the A-Scan, correspond-
ing to the RNFL and RPE, splits the retina into an inner segment (IS) and an outer
segment (OS). The ILM is the greatest contrast rise (seen from the top of the image)
in the IS and the RPE the greatest contrast drop in the OS. Blood vessel (BV) posi-
tions are detected by an adaptive thresholding along the sum of the pixels just above
the RPE: An average value is computed in a window around an A-Scan position.
If the local value at the window center lies below a fixed percentage of the window
average, the A-Scan is marked as a BV. On the further segmented boundaries, the
BV positions are always invalidated in the smoothing step and interpolated over. For
the segmentation of the inner layer boundaries an average filter on the original image
is a sufficient denoiser. The inner layer boundaries are found by edge detection taking
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the derivative along the A-Scan into account. Denoising by median filtering or simple
averaging does not give good results to detect the outer nerve fiber layer boundary
(ONFL). Therefore complex diffusion as proposed in [Fern 05] is used. An initially
distorted segmentation is found by edge detection and some heuristics, i.e. if there
is not exactly one edge found between the inner plexiform (IPL)/inner nuclear layer
(INL) boundary, the initial ONFL segmentation is set to the ILM. A discrete energy
minimization followed by a final smoothing determines the ONFL segmentation re-
sult. The energy term consists of a gradient measure, a neighborhood smoothness
measure and a smoothness measure between blood vessels.

The automated segmentation results on the segmentation evaluation dataset were
manually corrected with the OCTSEG software by 5 observers with experience in
the field of ophthalmic imaging. The author corrected the automated results of the
complete classification dataset. A gold standard (GS) was constructed from the
observers’ corrections: If at least two observers had corrected the respective layer at
an A-Scan position, the GS is the layer position nearer to the automated segmentation
in case of exactly 2 observer corrections and the median observer position otherwise.
It turned out that the observers differ most at blood vessel positions, i.e. the observer
standard deviation along the A-Scans and the blood vessel density computed over the
segmentation evaluation dataset linearly correlated for almost all layer boundaries.
The author’s corrections can be seen as representative for the corrections a single
OCT operator might carry out, as its mean absolute difference to the observers is
within the mean inter-observer difference ± standard deviation of the inter-observer
difference range, except for one layer boundary. The comparison of the GS with
the automated results yielded that the ONFL and IPL/INL boundaries exhibit the
highest segmentation error, with a mean absolute difference to the GS of 2.84µm
and 2.56µm. The algorithm development goals are fulfilled, because no significant
correlation between the segmentation error and scans of bad quality or glaucomatous
eyes could be found. The automated segmentation differs not much worse to the GS
than the single observer’s manual corrections.

The segmentation algorithm was already modified for volume data and first pre-
liminary results presented [Maye 11]. However, in the author’s opinion, the most
promising segmentation methods for future volume segmentation algorithm develop-
ment are graph-cut methods, as they are algorithmically compact and allow for fast
computation times. The properties of glaucomatous eyes, e.g. the possibility of a
complete RNFL loss, have to be taken into account when designing the algorithm.
Retinal layer segmentation algorithms may incorporate a content classification stage,
e.g. the presence of a disease is detected before the actual segmentation and the
algorithm parameters or even the algorithm itself is adapted to the disease.

The retinal layer segmentations on the circular scans are the basis for a classifi-
cation system to discriminate between glaucoma patients and healthy subjects. The
classification process includes the following steps: Thickness profile normalization,
feature computation, feature selection and classification. In all the experiments car-
ried out, a 10-fold cross-validation was used. The cross-validation is patient-sensitive,
e.g. both eyes of a person are either in the test or training dataset. The thickness
profile normalization can use two methods: First an age normalization can be per-
formed, i.e. we try to remove the effects of declining retinal layers thickness with
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age from the data. Second, the magnification normalization transforms the thickness
measures to area measures by multiplying the layer thickness values with the pixel
spacing in R-direction. After the thickness normalization, the features are computed
out of the 7 layer thickness profiles, i.e. 5 layer groups, the complete retina and a
virtual thickness profile of blood vessel indices. The features are standard measures
over the complete profile, means in sections, ratios in sections and PCA features,
yielding 762 features for each B-Scan in total. To the author’s knowledge, this is the
first work that utilizes the full retinal layer segmentation data for OCT glaucoma
detection and also applies a data mining method, i.e. feature selection, to identify
the features with highest relevance. The feature selection process takes place on the
training data in every cross-validation run, with the same classifier as used for the
test. “Forward selection and backward elimination” is the feature selection method
chosen. The linear naïve Bayes, k-nearest neighbor (kNN) and linear support vector
machine (SVM) are the classifiers compared.

The first experiments are carried out with the linear naïve Bayes classifier on
manually corrected segmentation data without any thickness normalization. While
the classification challenge to separate H from PG eyes yielded the highest classwise
averaged classification rate (CR) of 0.953 and an area under the receiver-operator
curve (auROC) of 0.985, discriminating the normal (N, combined H and OHT) from
the glaucomatous (G, PPG and PG) eyes is the most interesting classification chal-
lenge. The CR for the N vs. G challenge is 0.839. The thickness normalization
methods did not improve this result, therefore they were omitted in the following
experiments. The SVM classifier topped the result of the linear naïve Bayes with an
CR of 0.859. Not using manually corrected segmentation data but purely automated
results let the CR drop to 0.842. More interesting than the pure CR number is the
feature selection: The classification system adapted to the segmentations containing
errors by choosing features of more global scale. Training with manually corrected
and testing with pure automated data and vice versa showed that it is of advance to
use manually corrected data for training, no matter what the type of test data is.

A glaucoma probability score for OCT (OCT-GPS) can be constructed with the
decision boundary of the SVM: The classification experiment was again carried out
with a fixed feature set, containing all the features selected at least once during the
cross-validation runs by the feature selection with manually corrected data. The
resulting CR is 0.882. The OCT-GPS is defined as a mapping of the distance from
the feature vector to the decision boundary in feature space to a percent number. It
has a correlation with the glaucoma diagnosis on the classification dataset of 0.747,
which is higher than any single feature. Furthermore, the original H, OHT, PPG and
PG diagnoses are distributed among the OCT-GPS in a meaningful way.

In the future, the classification system may be further enhanced by utilizing vol-
ume data and image features. However, a focus on circular scans may also be bene-
ficial: Large data collections for classifier training are more likely to be established.
The circular scan around the ONH may be sufficient for a cheap, fast, and easy-to-use
OCT system that can automatically detect glaucoma suspects in dedicated screening
centers by using the OCT-GPS.
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Abbreviation Explanation
ACG Angle closure glaucoma
auROC Area under the ROC
BV Blood vessels
ELM Extermal limiting membrane
EV Eigen vector
FD-OCT Frequency domain OCT
G Glaucoma diagnosis group, i.e. PPG and PG combined
GPS Glaucoma probability score
GS Gold standard
H Healthy group
HE Heidelberg engineering
HE quality Built-in B-Scan quality measure of the HE Spectralis
HRT Heidelberg retina tomograph
ILM Inner limiting membrane
INL Inner nuclear layer
IPL Inner plexiform layer
IPR Inner photoreceptors
kNN k-nearest neighbor classifier
LDA Linear discriminant analysis
MoG Mixture of Gaussians
MS Multiple sclerosis
N Normal diagnosis group, i.e. H and OHT combined
OAG Open angle glaucoma
OCT Optical coherence tomography
OD Right eye
OHT Ocular hypertension group
ONH Optic nerve head
ONL Outer nuclear layer
OPL Outer plexiform layer
OPR Outer photoreceptors
ONFL Outer retinal nerve fiber layer boundary
OS Left eye
PCA Principal component analysis
PCV Polypoidal choroidal vasculopathy
PG Perimetric glaucoma group
PPG Preperimetric glaucoma group
ROC Receiver-operator curve
RGC Retinal ganglion cells
RNFL Retinal nerve fiber layer
RPE Retinal pigment epithelium
SLO Scanning laser ophthalmoscope
SVM Support vector machine
TD-OCT Time domain OCT
VF Visual field (test)
VH Vitreous humor
Zero quality B-Scan quality measure as proposed in [Maye 10]

Table A.1: Table of abbreviations in the text in alphabetical order.
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Symbol Explanation
BV R Region in between two BV
CF Corrected fraction of A-Scans
CR Classwise averaged classification rate
D(r) Regional smoothness term at A-Scan r
DB Image database
DOG Mean absolute observer difference to GS
E(r) Energy function
f Single feature, the subindices detail the type
f Feature vector
G(z, r) Gradient at position z, r
I Image intensities
I(z, r) Image intensity at position z, r
IOD Mean absolute inter-observer difference
L(r) Layer boundary position at A-Scan r
LT (t) Layer thickness at A-Scan r
L̄T (a) Mean layer thickness for age a
N(r) Local smoothness term at A-Scan r
O Set of observers
ODA Mean absolute difference of the observer correction to the

automated segmentation
ONFL(r) Outer nerve fiber layer position at A-Scan r
P Significance of Pearson’s correlation coefficient
R Possible A-Scan positions
Si Segment i of 32 of the circular scan
ScaleR Pixel Spacing in R-direction in µm/pixel
ScaleZ Pixel Spacing in Z-direction in µm/pixel
SDOG Mean signed observer difference to GS
SE (Absolute) segmentation error
SENS Sensitivity
SPEC Specificity
SSE Signed segmentation error
std(...) Standard deviation
STDO(r) Standard deviation of the observer corrections at A-Scan r
y Class label

Table A.2: Table of abbreviations and symbols used in equations in alphabetical
order (first part).
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Symbol Explanation
χ(...) Indicator function. 1 if the expression inside the brackes is

true, 0 otherwise
α Weighting factor
β Weighting factor
σ Standard deviation
σCD Noise standard deviation estimate for complex diffusion
#DB Number of images in the database
#f Dimension of the feature vector f
#N Number of pixels in a scan
#O Number of observers
#R Number of A-Scans in an image
#Si Number of A-Scans in segment Si

#TD Number of samples in the training data

Table A.3: Table of abbreviations and symbols used in equations in alphabetical
order (second part).
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