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ABSTRACT
Atrial fibrillation is a common heart arrhythmia which can be treated
minimally invasively using catheters. Navigation during the proce-
dure can be performed under fluoroscopic guidance. To overcome
the low soft tissue contrast of fluoroscopic images, they can be fused
with a pre-interventionally acquired 3-D segmentation of the pa-
tient’s left atrium (LA). As catheter positioning is crucial to destroy
arrhythmogenic tissue of the LA, better navigation by fusing the 3-D
LA shape with fluoroscopic images is important. Furthermore, addi-
tional graphical information can be visualized together with the LA
once the LA segmentation has been registered to the fluoroscopic im-
ages. Registration can be performed based on contrast agent which is
injected into the LA and then captured as part of an X-ray sequence.
Recent publications have shown that an intensity-based registration
using the contrasted area leads to good results. However, the depen-
dency between the frames of an X-ray image sequence has not been
exploited yet. Since contrast agent is injected over a certain period of
time and captured over many frames, we propose a time-dependent
registration. To this end, we introduce motion regularization to en-
sure small motion of the overlay between successive frames. We pro-
pose two methods for motion regularization. One method is based
on a Markov chain model of the heart motion, the other approach
introduces a motion regularizer into the similarity measure used for
registration. The Markov chain approach reduces the registration
error significantly from 7.9±6.3 mm to 5.7±4.6 mm. The motion
regularizer also reduces the registration error significantly, but less
than the Markov approach.

Index Terms— Registration, Electrophysiology

1. INTRODUCTION

Atrial fibrillation is a wide-spread arrhythmia of the left atrium (LA)
and is a leading cause of stroke [1]. One treatment option is catheter
ablation which is performed minimally invasively using either radio-
frequency catheters or so called single-shot devices, e.g., the cryo-
balloon [2]. The catheters are guided over the right atrium into
the LA via a transseptal puncture. Guidance during treatment can
be accomplished using electro-anatomical mapping systems or flu-
oroscopy involving C-arm X-ray systems. One drawback of fluoro-
scopic guidance is the lack of 3-D anatomical information. To over-
come this problem, a 3-D heart model of the patient can be obtained
either pre-operatively or intra-operatively, e.g., using CT, MRI or C-
arm CT followed by a segmentation step. This model can then be
overlaid on fluoroscopic images to provide 3-D anatomical informa-
tion [3].

To display a properly aligned overlay image, the coordinate sys-
tem of the 3-D model needs to be registered to the 2-D images ob-

Fig. 1. Registration of a 3-D model segmented from a preopera-
tive MRI scan to fluoroscopic images. This can be accomplished
by aligning the 3-D model to anatomical structures of the LA high-
lighted by contrast agent. This implies moving the model along the
red arrow in this case.

tained with the C-arm X-ray system. Registration can be performed
manually when the shape of the left atrium is enhanced by injecting
contrast agent [4]. Contrast injection can be used at the beginning
of the procedure to verify puncture success and the sheath position
within the LA [5]. Using a biplane C-arm system, image sequences
from two views, A and B with an angular offset of, e.g., 90 degrees,
can be acquired together. By registering the LA model to the angio-
graphic sequences of both views simultaneously, a 3-D/2-D registra-
tion can be performed [6, 4], see Figure 1.

An automatic contrast-based registration has been proposed by
Thivierge-Gaulin et al. [7]. Here, a transform of the LA model is
found such that the image intensities within the projected shadow of
the left atrium as well as the intensities outside the projected shadow
are homogeneous. A different approach by Zhao et al. [8] computes
digitally rendered radiographies of a CT volume showing the LA and
optimizes the transformation using gradient correlation. To keep the
contrast burden to the patient low, often only a small amount of con-
trast agent is injected into the LA such that it is only partially visible
in the X-ray images. In these cases, an automatic contrast-based
registration is more challenging. This problem was addressed by a
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recent method that matches edges of the 3-D LA model to edges
in the angiography while enforcing a consistency condition for the
contrast agent distribution [9]. A different approach using a segmen-
tation of the coronary sinus (CS) catheter in the CT- or MRI-volume
and a reconstruction of the CS catheter from two X-ray images was
proposed by Brost et al. [10].

All these approaches have in common that the frames of an an-
giographic sequence are treated independently. However, if the LA
motion is captured using a sufficiently high frame rate, valuable in-
formation can be obtained by taking motion into account. This can
be accomplished by enforcing a motion constraint on the position
of the LA model in 3-D. We propose, based on the work in [9], a
registration for all contrasted frames of an angiography series that
introduces dependencies between single frames within a sequence
to end up with more robust registration results. We investigate two
different approaches: The first approach applies a retrospective mo-
tion constraint to refine already computed registration results us-
ing a confidence-based temporal filtering method implemented as
a Markov process. The second approach introduces a regularizer on
the position of the left atrium to improve registration by constraining
the estimated LA motion.

2. REGISTRATION

In this section, we summarize briefly the registration of a single
frame which is described in detail in [9]. The main idea of the regis-
tration is to compare images showing the contrast agent and its edges
to corresponding images rendered from the 3-D model. The compar-
ison is performed using an intensity-based similarity measure.

For each frame Ic of the angiography containing contrast agent,
a difference image is computed using an uncontrasted frame Iu,
IDSA = Iu − Ic. Based on this image, a binary image Ithr of
the contrast agent is obtained using a threshold. In the next step, an
image IDOG showing edges of the contrast agent is calculated by ap-
plying a derivative of Gaussian (DOG). For a given transformation
T , 2-D feature images are rendered from the 3-D model for both
views A and B: The first pair of feature images, SA

T and SB
T show

the projected shadow of the LA model. The second pair, EA
T and

EB
T show edges of the 3-D model as they appear from the respective

viewing direction. From the normalized cross correlation

ρn(I1, I2) =

n∑
x=0

m∑
y=0

(I1(x, y)− µ1) · (I2(x, y)− µ2)

σ1 · σ2
, (1)

similarity measures are derived as

ρDSA
shad(T ) = ρn(IADSA,S

A
T ) · ρn(IBDSA,S

B
T ), (2)

ρthrshad(T ) = ρn(IAthr,S
A
T ) · ρn(IBthr,S

B
T ), (3)

ρedge(T ) = ρn(IADOG,E
A
T ) · ρn(IBDOG,E

B
T ). (4)

For the third similarity measure, a contrast agent distribution esti-
mate (CADE) C3-D

T (v) is computed. The 3-D model is represented
as a binary volume and a voxel v is considered as contrasted if (a)
it is located within the LA, and (b) its projection onto both imaging
planes after applying the transformation T hits a contrasted pixel.
All contrasted voxels are forward projected into 2-D finally yielding
two binary images CA

T ,C
B
T . The CADE-based similarity measure

is then defined as

ρCADE(IAthr, I
B
thr, T ) = ρn(IAthr,C

A
T ) · ρn(IBthr,C

B
T ). (5)

In practice, the transformation T can be implemented as a pure 3-D
translation. The rotation is neglectable as the patient are positioned

similarly during the 3-D scan and during the intervention itself [10,
6, 9]. Therefore, we use as transformation T a translation vector. We
consider our 3-D model to be mean-centered, i.e., the center of mass
is located at the origin of the coordinate system. As a consequence,
the position x of the model, i.e., the center of mass is identical to the
translation vector T and we will use both interchangeably.

3. MOTION CONSTRAINED REGISTRATION

3.1. Confidence-Based Temporal Markov Filtering

In our first approach for motion compensated registration, we model
the position of the LA model in 3-D as a time-dependent continuous
Markov chain of first order. The states are positions of the model in
R3, χi denotes the actual position of the LA in the i-th contrasted
frame, x i denotes the estimate of the position for the i-th frame. The
probability, that at time point i the position x i is observed is denoted
as P (χi = x i) or, for convenience, simply as P (x i). The transition
probability from one state into another does not depend on frame
number and is denoted as P (x i → x i+1).

Transition probabilities and state probabilities have different
functions: The transition probabilities govern how LA positions, as
estimated for the previous and the successive frame, are averaged.
They are highest if the overlay does not move. The state probability
controls how much averaging is performed for a single frame, i.e.,
how much it is moved away from its current position. We will base
the state probability on a confidence measure that reflects the esti-
mated accuracy associated with a computed registration result for
a frame. For frames with a high-confidence registration result, the
transition probability has only little influence and little averaging is
performed. More averaging is applied to frames where the computed
registration result is less certain.

At the end, a sequence of positions x 1, . . . , xn is to be deter-
mined such that the term

P (x 1, . . . , xn) = P (x 1) ·
n∏

t=2

(P (x t−1 → x t) · P (x t)) (6)

is maximized. The state probabilities and the transition probability
are determined as follows.

3.1.1. State Probability

The probability of the LA for being at position x i at frame i is di-
rectly related to the contrast agent in frame i. The most probable
position x ′i, ignoring the dependency on other frames, is defined by
the registration result for this single frame. This registration result is
obtained by maximizing one of the similarity measures ρ defined in
Eqs. (2) - (4) or a combination of them.

As the similarity measure depends on the image content, we de-
note the similarity measure for frame i by ρi. Zhao et al. [8] sug-
gested to use the value ρi(x ′i) as a confidence measure. That is, to
select from all N registration results the frame i where ρi(x ′i) is
maximum and use this as registration result for the whole procedure.
We confirmed that ρi(x i) is indeed correlated with the registration
error and can therefore be used as a confidence measure. Next, we
define a function e(ρi(x i)) which provides us with an error estimate
based on the value of ρi. This function is obtained in a training step
using linear regression. Using the position x ′i of the LA found dur-
ing optimization for frame i, the probability P (x i) can be modelled
as normal distribution

P (x i) = N
(
x i; x

′
i,Σi

)
. (7)



Table 1. Translation errors
All frames
Objective function No motion constraint Markov filtering Motion regularizer
ρDSA
shad + ρedge 8.9±6.1 mm 6.9±3.9 mm 7.6±4.6 mm
ρthrshad + ρedge 9.3±7.2 mm 7.0±4.2 mm 8.4±5.0 mm
ρCADE + ρedge 8.3±6.4 mm 6.2±4.3 mm 7.8±5.7 mm
Initial injections
Objective function No motion constraint Markov filtering Motion regularizer
ρDSA
shad + ρedge 8.3±6.6 mm 6.5±4.3 mm 7.5±5.1 mm
ρthrshad + ρedge 8.3±6.7 mm 6.1±4.4 mm 7.3±4.6 mm
ρCADE + ρedge 7.9±6.3 mm 5.7±4.6 mm 6.3±4.8 mm
Clinical experts 3.3±2.7 mm

By setting the covariance matrix Σi to 1 · e(ρi(x ′i)), we incorporate
our confidence range.

3.1.2. Transition Probability

The transition probability P (x t−1 → x t) states how likely a move-
ment of the LA is from frame t− 1 to t. As frame rates may differ,
the frame rate r of the sequence needs to be taken into account. The
position of the LA observed over multiple breathing cycles moves
about a mean position. So, the mean motion can be set to 0. Based
on annotated training data, we computed for each frame i the ve-
locity v i = (x t − x t−1) · r and the covariance matrix Σv of the
velocities. This gives us an estimate for how probable a motion is.
The probability of a transition x t−1 → x t is then modelled as a
normal distribution

P (x t−1 → x t) = N ((x t − x t−1) · r; 0,Σv ) . (8)

3.1.3. Most Probable State Sequence

The most likely state sequence is defined by

x∗1, . . . , x
∗
n = argmax

xi,...,xn

P (x i, . . . , xn). (9)

Optimization is done using a log-likelihood method: By applying
the logarithm to Eq. 6, we get

x∗1, . . . , x
∗
n = argmax

x1...xn

−1

2

(
(x 1 − x ′1)TΣ−1

1 (x 1 − x ′1)

+

n∑
i=2

(
(x i − x ′i)

TΣ−1
i (x i − x ′i) +

r · (x i − x i−1)TΣ−1
v (x i − x i−1) · r

))
(10)

which is a convex optimization problem that can be solved using the
(L)BFGS method [11].

3.2. Motion Regularization

In the Markov filtering approach, the uncertainty of the registration
result is introduced afterwards in Eq. 7 by the covariance matrix Σi

which incorporates the confidence range of the solution for frame i.
This uncertainty measure is decoupled from the registration of the
frames but is computed explicitly based on previous observations

of the registration error. However, uncertainty is also represented
implicitly in the shape of the objective function around the global
optimum. For example, the shape might be rather plateau-like when
having a high uncertainty.

Therefore, we propose to add a regularizer to the optimization
function which alters the shape of the objective function in order
to favor small motion between successive frames, similar to an ap-
proach by Berger et al. [12]. So, instead of optimizing the objective
function ρ for each frame independently, a joint optimization

x∗1, . . . , x
∗
n = argmax

x1...xn

n∑
i=1

ρ(x i)− α
n−1∑
i=1

||x i+1 − x i||2. (11)

for all frames is performed.
As the objective space is rather complex and contains several

local optima, an initialization needs to be found that is close to the
optimal solution. In our case, the x i are initialized by performing
an independent registration for each single frame i. Then, Eq. 11 is
optimized by a LBFGS optimizer using approximated gradients.

4. EXPERIMENTS AND RESULTS

For evaluation of our method, we used the same data as in [9]. This
data set comprised 21 clinical biplane angiography sequences from
10 different patients. For all 133 frames, a ground-truth-annotation
from two or more physicians was available. The data can be split into
11 sequences showing an initial contrast injection at the beginning
of the procedure and 10 sequences showing a subsequent injection.
Typically, for initial injections, more contrast agent is used such that
the LA is outlined better.

The training of the error estimate function e(ρi(x i)) and the
transition probability covariance matrix Σv as well as the determi-
nation of a suited regularizer weight α was performed in a leave-
one-patient-out cross-validation. In our experiments, we first did a
per-frame-registration as described in [9] and performed then our
proposed motion compensations. The results are listed in Table 1.
The mean error for a Markov filtering on the results achieved using
the CADE similarity measure was 6.2±4.3 mm for all sequences and
5.7±4.6 mm when only initial injections were considered. The re-
spective median errors were 4.7 mm and 4.0 mm. A Wilcoxon signed
rank test [13] showed that the results obtained by the Markov filter-
ing were in all cases significantly better than the results from the
regularizer-based approach.

The overall computation time is made up of the computation of
the initial registration which takes between 13 and 27 seconds [9] per
frame and the subsequent motion filtering operation. Experiments



were run on a PC having an Intel i7, 2.6 GHz CPU and a NVidia
K1000M GPU. The runtime of the Markov filtering is 173±124 ms
per sequence, the optimization of the function using the regularizer
takes 6.8±5.6 minutes if ρCADE+ρedge is used as objective function
and 1.3±1.0 minutes for the other objective functions.

5. DISCUSSION AND CONCLUSIONS

In our experiments, the Markov filtering outperformed the motion
regularizer based approach. This result confirms that the value of
the similarity measure is a good measure for uncertainty. The best
results were achieved using the CADE measure, which has also been
shown in [9] to outperform other similarity measures. In our new
results, the mean error was close to the clinical relevant threshold of
5.0 mm [14], while the median error was below this threshold.

Actually, the transition probability depends not only on the
frame rate r but also on the current breathing phase. Cardiac motion
is negligible compared to breathing motion as it rather deforms the
LA. In future work, if the breathing phase can be estimated [15],
motion in superior direction should have, e.g., a higher probability
during the inhale phase. During exhale phase, motion in inferior di-
rection should be considered as more likely. This could be achieved,
e.g., by estimating the mean value and the covariance matrix sepa-
rately for different stages of the breathing cycle.

The runtime of the simple regularizer-based approach is rela-
tively high. This is because the similarity measure needs to be com-
puted in each iteration for all frames. A speedup can, however, be
easily achieved by using different hardware. For example, using the
same GPU as in [9] would result in a speedup factor of approx. 3, a
more recent GPU will probably reduce computation time even more.

An analysis showed that the regularizer-based method is sensi-
tive to the selection of α. To find a theoretical lower bound, for
each case, α was not determined in a leave-one-out training step but
chosen optimally. In this case, almost the same results as for the
Markov approach could be achieved. As a single value of α does
not generalize to all images, further effort would be needed to find
a method with which to determine a good α-value for unknown im-
ages. However, the accuracy which is theoretically achievable by an
optimal selection of α can also be achieved with less runtime using
the Markov-approach. So there is practically no need for finding a
method for the selection of α.

Regardless of the filtering method, results improved in both
cases significantly compared to an unfiltered registration. This
shows that motion filtering is essential to obtain reliable registration
results. In a future work, a similar approach could be also applied to
device based registration [10].

Compared to selecting the frame with the highest confidence for
registration as proposed by [8], our filtering approach allows the
physician to choose the frame, as good results are obtained for all
frames. This has the advantage that the physician is free to choose a
frame, e.g., depending on the breathing phase or heart phase.

Acknowledgments and Disclaimer. This work was supported by
Siemens Healthcare GmbH. The concepts and information presented
in this paper are based on research and are not commercially avail-
able.

6. REFERENCES

[1] P.A. Wolf, R.D. Abbott, and W.B. Kannel, “Atrial fibrillation as
an independent risk factor for stroke: the Framingham study,”
Stroke, vol. 22, no. 8, pp. 983–988, 1991.

[2] V. Fuster, L. Rydén, D. Cannom, H. Crijns, et al., “ACC/AHA/
ESC 2006 Guidelines for the Management of Patients With
Atrial Fibrillation - Executive Summary,” Journal of the Amer-
ican College of Cardiology, vol. 48, no. 4, pp. 854, 2006.

[3] S. De Buck, F. Maes, J. Ector, J. Bogaert, et al., “An Aug-
mented Reality System for Patient-Specific Guidance of Car-
diac Catheter Ablation Procedures,” Medical Imaging, IEEE
Transactions on, vol. 24, no. 11, pp. 1512 –1524, nov. 2005.

[4] M. Hoffmann, F. Bourier, N. Strobel, and J. Hornegger,
“Structure-Enhancing Visualization for Manual Registration in
Fluoroscopy,” in Bildverarbeitung für die Medizin 2013, Berlin
Heidelberg, 2013, Informatik aktuell, pp. 241–246, Springer.

[5] T. Feldman and W. G. Fisher, Problem Oriented Approaches
in Interventional Cardiology, chapter Transseptal puncture, pp.
203–218, CRC Press, 2007.

[6] F. Bourier, D. Vukajlovic, A. Brost, J. Hornegger, N. Strobel,
and K. Kurzidim, “Pulmonary Vein Isolation Supported by
MRI-Derived 3D-Augmented Biplane Fluoroscopy: A Feasi-
bility Study and a Quantitative Analysis of the Accuracy of the
Technique,” Journal of Cardiovascular Electrophysiology, vol.
24, no. 2, pp. 113–120, 2013.

[7] D. Thivierge-Gaulin, C.R. Chou, A. Kiraly, C. Chefd’Hotel,
N. Strobel, and F. Cheriet, “3d-2d registration based on mesh-
derived image bisection,” in Biomedical Image Registration.
2012, vol. 7359 of Lecture Notes in Computer Science, pp. 70–
78, Springer Berlin Heidelberg.

[8] X. Zhao, S. Miao, L. Du, and R. Liao, “Robust 2-d/3-d registra-
tion of ct volumes with contrast-enhanced x-ray sequences in
electro-physiology based on a weighted similarity measure and
sequential subspace optimization,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Confer-
ence on, May, 26th - 31st 2013, pp. 934–938.

[9] M. Hoffmann, C. Kowalewski, A. Maier, K. Kurzidim, N. Stro-
bel, and J. Hornegger, “3-D/2-D Registration of Cardiac
Structures by 3-D Contrast Agent Distribution Estimation,”
arXiv:1601.06062 [cs.CV], 2016.

[10] A. Brost, F. Bourier, L. Yatziv, M. Koch, et al., “First steps
towards initial registration for electrophysiology procedures,”
in Medical Imaging 2011: Visualization, Image-Guided Proce-
dures, and Modeling. 2011, vol. 7964, p. 79641P, SPIE.

[11] D. Goldfarb, “A family of variable-metric methods derived by
variational means,” Mathematics of computation, vol. 24, no.
109, pp. 23–26, 1970.

[12] M. Berger, K. Müller, J.-H. Choi, A. Aichert, et al., “2D/3D
Registration for Motion Compensated Reconstruction in Cone-
Beam CT of Knees Under Weight-Bearing Condition,” in
IFMBE Proceedings, D. A. Jaffray, Ed., 2015, pp. 54–57.

[13] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometrics bulletin, pp. 80–83, 1945.

[14] A.P. King, R. Boubertakh, K.S. Rhode, Y.L. Ma, et al., “A
subject-specific technique for respiratory motion correction in
image-guided cardiac catheterisation procedures,” Medical Im-
age Analysis, vol. 13, no. 3, pp. 419 – 431, 2009.

[15] P. Fischer, T. Pohl, and J. Hornegger, “Real-Time Respiratory
Signal Extraction from X-Ray Sequences using Incremental
Manifold Learning,” in 2014 IEEE 11th International Sym-
posium on Biomedical Imaging (ISBI), 2014, pp. 915–918.


	 Introduction
	 Registration
	 Motion Constrained Registration
	 Confidence-Based Temporal Markov Filtering
	 State Probability
	 Transition Probability
	 Most Probable State Sequence

	 Motion Regularization

	 Experiments and Results
	 Discussion and Conclusions
	 References



