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Abstract

We present an algorithm for the segmentation of
the liver in 2-D computed tomography slice images.
The basis for our algorithm is an implicit active shape
model. In order to detect the liver boundary and guide
the shape model deformation, a boundary classifier has
been integrated into the implicit framework in a novel
manner. The accuracy of the algorithm has been evalu-
ated for 20 test cases including both normal and abnor-
mal livers.

1 Introduction

In perfusion computed tomography (CT) [6], the
spread of contrast agent within an organ is monitored in
a time series. This allows quantifying important diag-
nostic measures like blood flow and volume, alterations
of which may for example indicate tumors or strokes. It
is beneficial to have a segmentation of the organ, as one
of the model inputs for perfusion imaging is the mean
tissue time attenuation curve. In addition, segmenta-
tion could also form the basis when registering the time
series in order to compensate for respiratory motions.
Since even state of the art CT scanners are not capable
of acquiring larger structures like the liver at high tem-
poral resolution, perfusion CT is often limited to few
slices which encompass the region of highest interest.
Thus, we focus on 2-D segmentation of organ cross-
sections in the following.

The remainder of this paper is organized as follows:
in Sect. 2, related work is summarized. The proposed
method is described in Sect. 3. Evaluation results are
presented in Sect. 4, followed by a discussion and con-
cluding remarks in Sect. 5.

2 Related work

Several approaches have been proposed for the seg-
mentation of the liver in 2-D and 3-D datasets. Lim
et al [4] obtain a 2-D segmentation by first perform-
ing a combination of thresholding and multi-scale mor-
phological operations. The initial shape is then refined
by searching for a smooth path in a gradient label map.
Liu et al [5] employ a gradient vector flow (GVF) active
contour for segmenting the liver. A Canny edge detector
is used to generate an edge map, which is preprocessed
in order to eliminate erroneously excluded concave re-
gions prior to the GVF calculation.

A large number of interactive, semi-automatic, and
fully automatic approaches for the 3-D segmentation of
the liver competed in [2]. The most successfully auto-
matic method was contributed by Kainmüller et al [3].
Like most other 3-D methods, it is based upon an active
shape model (ASM) [1] of the liver. A heuristic inten-
sity model is utilized for fitting the shape model to the
image data.

3 Materials and methods

Segmenting organs in CT scans is a challenging task,
as reduced radiation dose limits signal-to-noise ratio
and contrast. Tissues belonging to different organs of-
ten are difficult to distinguish, for example at the bound-
ary between liver and muscles surrounding the ribs.

Most 2-D liver segmentation methods base on some
kind of active contour model. Heuristic approaches are
usually incorporated to prevent the formation of inad-
missible shapes, e.g. by removing concave regions, as
mentioned above. This, however, limits their general
applicability. In contrast, the majority of the 3-D meth-
ods employ active shape models. The increased robust-
ness comes at the cost of a reduced flexibility of the
model, which is usually relieved to some degree by al-
lowing free-form deformations. When applying active
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shape models for the 2-D segmentation of the liver, flex-
ibility is of exceptional importance, since the model not
only has to deal with the high inter subject variability of
the liver but also has to address the inter slice variabil-
ity. Clearly, segmenting the whole liver slice by slice
using a single shape model is not feasible. However, as
Sect. 4 will show, it is possible to segment slices ac-
quired within a certain region using a shape model.

In this paper, the implicit active shape model of
Rousson et al [8] has been chosen as basis. This model,
reviewed in Sect. 3.1, features a traditional active con-
tour constrained by an active shape model, providing for
a robust yet flexible segmentation embedded in the level
set framework [9]. Gray level appearance models are
commonly used in explicit, i.e. landmark based, active
shape models to guide the deforming model towards ob-
ject boundaries of interest. The novel incorporation of
such an appearance model into the implicit framework
is described in Sect. 3.2

3.1 Implicit active shape model

The basis for the statistical shape model consists of a
set of segmentation masks, which are obtained by man-
ually segmenting the organ in reference data. In order
to analyze shape variations, the first step is to elim-
inate variations due to similarity transformations, i.e.
translation, rotation, and isotropic scaling. Therefore,
one mask is chosen as reference and for the remaining
masks, transformations are estimated which maximize
the pair wise overlap between all training masks quan-
tified by the alignment energy proposed by Tsai et al
[10]. In 2-D, each transformation consists of a 2 × 2
matrix accounting for scaling and in-plane rotation as
well as a 2-D translation vector. The resulting 4 degrees
of freedom per transformation are optimized through
gradient descent. Since the method typically requires
a large number of iterations and is prone to local min-
ima, we first normalize translation, rotation, and scale
(area) and then perform gradient descent from coarse to
fine resolutions.

Following the alignment, the next step is to con-
vert shapes encoded by the aligned masks into an im-
plicit representation. This is accomplished by creating
a signed distance map for each mask, whereby each grid
point is assigned its positive or negative Euclidean dis-
tance to the boundary, depending on whether it is out-
side or inside the object.

Principal component analysis (PCA) is employed on
the aligned signed distance maps in order to analyze
the remaining variation, which is due to differences in

shape. New shapes are then expressed as

ψ (λ) = ψ̄ +
N∑

i=1

λiψi, (1)

where λ is the vector of mode weights λi, ψ̄ is the av-
erage over all signed distance maps and ψi are the N
significant Eigenmodes obtained from the PCA.

In order to employ the learnt model for image seg-
mentation, another level set function φ is introduced,
which evolves as active contour according to the image
content and which is constrained by the shape model.
The fitting of active contour and shape model is for-
mulated through the following energy functional, which
measures the squared difference between both level set
functions.

E (ψ,A,λ) =
∫

Ω

δ (φ) (φ− ψ (A,λ))2 dΩ (2)

A is an affine transform which aligns ψ with φ and
λ again is the vector of mode weights. Since only the
matching at the active contour, represented by the zero
level set of φ, is of interest, the Dirac delta function δ
is included in the above functional. The computational
domain is denoted with Ω ⊂ R2.

Equation (2) is minimized in an iterative manner by
alternating optimization of φ according to the calculus
of variations of (2) on one hand, and of A and λ by
gradient descent on the other hand. We refer to [8] for
further details. As mentioned above, the active contour
level set function is evolved under both shape informa-
tion and image information. The latter will be detailed
in the following section.

3.2 Boundary classification based image term

In the context of explicit ASMs, appearance models
are commonly used to guide the deformation [1]. This
involves sampling intensities profiles at each landmark
in surface normal direction during a training phase. As-
suming a normal distribution, the appearance model
is then obtained by calculating the mean and covari-
ance matrix of the profiles. This principle has been
extended to arbitrary distributions by sampling both
boundary and non-boundary profiles and employing a
nearest neighbor classifier [11]. During segmentation,
each landmark point is moved in its normal direction
towards the most probable boundary point. Compared
to simple edge detectors, this approach greatly increases
robustness.

In the following paragraph, we describe a novel inte-
gration of such an image term into implicit ASMs. The
procedure is illustrated through Fig. 1. First, a narrow



band is created around the current zero level set of φ us-
ing the Fast Marching algorithm [9]. For all grid points
inside the narrow band, intensity profiles are sampled
with the normal given by ∇φ. The probability of each
point being part of the boundary is estimated through
the appearance model. Compared to traditional explicit
ASMs, where profiles are only sampled at landmarks,
this approach is superior, especially in regions with high
curvature. All boundary point candidates are then pro-
jected back onto the curve by gradient ascent (descent)
on φ for interior (exterior) boundary points until the
zero level set is reached. Only the boundary point with
the highest probability is kept along each path, all other
candidates are discarded. Finally, for all pairs of inte-
rior and exterior paths ending at the same position of
the zero level set, only the inside or outside boundary
point is kept, depending on which one has the higher
probability. The probability map is updated whenever
the deforming contour reaches its boundary.

Figure 1. Projection of probabilities. Left:
boundary probabilities are calculated
within the narrow band (dashed outline)
and projected (arrows) onto the curve
(solid line). Right: the point with the high-
est probability has been kept for each pair
of interior/exterior projection paths.

Since the capture range of such a probability map
is limited, guiding the active contour towards bound-
ary points solely using the gradient would not be suffi-
cient. We therefore calculate the GVF of the probabil-
ity image to diffuse the gradient vectors over the whole
narrow band. This greatly increases the capture range.
The GVF term is incorporated into the active contour
evolution according to [7] and competes with the afore-
mentioned shape constraint term imposed by (2). The
evolution equation for the active contour level set func-
tion φ is then

∂

∂t
φ =αg |∇φ| div

(
∇φ
|∇φ|

)
− βg (v · ∇φ) (3)

− γδ (φ) (φ− ψ) .

g is a stopping function, “div” denotes the divergence
operator, and v is the GVF field. The first term on the
right hand side of (3), weighted by α, accounts for the
smoothness of the curve. The second term, weighted by
β, incorporates the GVF, driving the curve to boundary
points. Finally, the third term, weighted by γ, consti-
tutes the shape constraint and is derived from the calcu-
lus of variations of (2). We refer to [7] for more details
on the first and second term, and to [8] for more details
on the third term.

4 Evaluation

The proposed algorithm has been trained using 20
reference images and segmentations provided by a
workshop on segmentation in the clinic [2]. Since this
database consists of 3-D scans, all slices except for a
single central slice with axial orientation were discarded
beforehand. The central part is especially challenging
since the liver separates there into the left and right lobe.
In addition, several vessels are present in that region.
All training and test images were acquired with vary-
ing levels of contrast enhancement and comprised both
normal and abnormal livers exhibiting pathological al-
terations like tumors. All images had their histograms
standardized with respect to a reference image prior to
isotropic diffusion filtering. A k nearest neighbor clas-
sifier with k = 20 was chosen as appearance model.
The training set consisted of profiles with 7 samples at
2 mm spacing.

In order to evaluate the algorithm, 20 central slices
from a different database were selected. The same pre-
processing steps, i.e. histogram standardization and dif-
fusion filtering, were applied. The segmentation was
started with a grid of size 128×128. After convergence
was reached on one level, calculations were performed
at the next finer level with doubled resolution up to the
original slice size of 512× 512. The results of the seg-
mentation algorithm were compared to manual segmen-
tations. In order to evaluate accuracy, the area overlap
(AOL, %) and area difference (A∆ , relative w.r.t ref.
segmentation) were calculated as well as the symmetric
mean absolute (dabs, mm), root mean squared (drms,
mm), and maximum (dmax, mm) boundary distance.
The results of these evaluation metrics are listed in Ta-
ble 1. Images are shown in Fig. 2 for cases 2 and 3 (top
row) and cases 7 and 9 (bottom row).

5 Discussion and conclusion

Table 1 shows the proposed algorithm is able to ac-
curately segment the liver. For the majority of test cases,



Table 1. Evaluation results for all test
cases. From left to right: area overlap (%)
and rel. difference, symmetric mean abs.,
root mean squared, and max. boundary
distance (mm).

Case AOL A∆ dabs drms dmax

1 96.4 0.7 1.9 3.0 14.6
2 97.4 -0.3 1.1 1.7 7.9
3 98.5 -2.3 0.7 1.0 4.7
4 95.6 1.0 2.9 6.0 27.2
5 95.2 -2.4 2.3 4.3 19.0
6 97.4 -2.9 1.3 1.8 6.8
7 96.7 -3.3 1.2 2.1 12.0
8 96.4 0.7 1.9 4.3 22.2
9 81.1 -28.6 11.0 22.2 79.0

10 96.5 -6.2 1.7 2.4 9.4
11 97.3 -0.3 1.6 2.3 9.3
12 97.6 -2.4 0.9 1.5 7.2
13 89.7 -5.1 4.3 7.0 26.1
14 97.6 -2.6 1.1 2.2 14.9
15 96.8 -4.2 1.6 2.7 12.4
16 95.3 -0.2 2.5 4.1 19.4
17 94.7 -3.7 2.6 5.2 26.0
18 93.5 -5.9 3.6 6.5 32.7
19 95.4 -6.6 2.3 3.3 13.2
20 97.2 -0.9 1.3 2.3 11.0

Figure 2. Segmentation results for case 2
and 3 (top row) and case 7 and 9 (bottom
row).

the area overlap is larger than 95% while at the same
time, the mean absolute surface distance is below or
close to 2 mm. Large maximum boundary distances are
mostly caused by deviations in the region of the vena
cava. Undersegmentation occurred at the apex of elon-
gated livers. The algorithm failed for case 9. Due to a
bad initialization, the right part of the liver was entirely
missed and the fitting only took place for the left part.
For images with poor quality or pathologies (e.g. the tu-
mor in case 3, see dark region in Fig. 2), the algorithm
proved to be robust.

One possible direction of future research could be
the inclusion of a region term besides the boundary term
in order to obtain a more global solution. Furthermore,
by utilizing individual appearance models for different
regions, the quality of boundary detection might be in-
creased.
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